免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 导数与微分一、主要内容小结1. 定义定理公式(1)导数,左导数,右导数,微分以及导数和微分的几何意义(2) 定理与运算法则定理1 存在 .定理2 若在点处可导,则在点x处连续;反之不真.定理3 函数在处可微在处可导.导数与微分的运算法则:设均可导,则, , , (3)基本求导公式2. 各类函数导数的求法(1)复合函数微分法(2)反函数的微分法(3)由参数方程确定函数的微分法(4)隐函数微分法(5)幂指函数微分法(6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法.方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对求导).(7)分段函数微分法3. 高阶导数(1)定义与基本公式高阶导数公式: 莱布尼兹公式:(2)高阶导数的求法 直接法 间接法4. 导数的简单应用(1) 求曲线的切线、法线 (2) 求变化率相关变化率二、 例题解析例2.1 设 , (K为整数).问:(1)当K为何值时,在处不可导;(2)当K为何值时,在处可导,但导函数不连续;(3)当K为何值时,在处导函数连续?解 函数在x=0点的导数:= = 即 当时, 的导函数为:为使,取即可。因此,函数当K1时,在处不可导;当时,在处可导,但导函数在处不连续;当时,在处可导且导函数在处连续。例2.2 , 求。分析 本例当然可以用商的求导法则来求,但比较麻烦,若先对函数表达式进行变形就可用代数和的求导法则来求,这样就简便多了。解 = 。所以 。如果不经过化简,直接求导则计算将是十分繁琐的。例2.3 ,求。分析 本例若直接对原式利用差的求导法则及复合函数求导法来求,比较麻烦,但若利用对数性质对函数表达式的第二项变形,再利用差及复合函数求导法来求,就简便得多。解 因为 所以 = 例2.4 设,求。解 利用积的求导法则及复合函数求导法则,有 = = 。例2.5 设方程 , 求 .本例是隐函数求导问题,对隐函数求导可用下面两种方法来求。解 (方法一) 方程两端同时对求导( y看作x的函数),由复合函数求导法可得 (方法二) 方程两边同时微分:所以 例2.6 已知 , 为二次可微函数,且 ,求 , 。分析 这是由参数方程所确定的函数的高阶导数的计算问题,可按参数方程求导法则来求。解 因为 = 所以 。又 所以 = 。常见错解: 。错误原因 没有搞清求导对象. 是一阶导数对求导,而是一阶导数对t求导。例2.7 求函数 的微分。解 = = 例2.8 设 , 求 。 分析 本例是求分式有理函数的高阶导数,先将有理假分式通过多项式除法化为整式与有理真分式之和,再将有理分式写成部分分式之和,最后仿的表达式写出所给定的有理函数的n阶导数。解 = = = ()例2.9 设 求的导函数 的连续区间,若间断,判别类型,并分别作与的图形。 分析 函数是用分段表达的函数. 在的两侧: 当 时,;当时, .因此,在 处,的可导情况,需根据定义来作判断,求出导函数后,再判别它的连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制冷竞赛考试题目及答案
- 海西州交通运输局2025年面向社会公开招聘编外工作人员的备考题库(含答案详解)
- 通辽市扎鲁特旗事业单位2026年第一批次人才引进39人备考题库及完整答案详解1套
- 愈见倾听师考试题及答案
- 中国雄安集团有限公司2026年度校园招聘备考题库参考答案详解
- 幼儿教师资格证考试题及答案
- 音响基础考试题及答案
- 2026年中山市三角镇水务事务中心公开招聘水闸、泵站管理人员备考题库及答案详解参考
- 北京市丰台区第五小学2026年招聘调动教师备考题库及答案详解(新)
- 2026年【官渡区招聘】朗威酒店招聘备考题库及参考答案详解一套
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 黑龙江省哈尔滨市南岗区2024-2025学年(五四制)六年级上学期期末语文试题
- 金融投资顾问投资组合的收益与风险控制绩效考评表
- 培训机构安全巡查表
- 旧楼污水改造施工方案
- 实现绿色理念构建和谐校园-倡导环保行为共创美好未来
- 安防监控系统运营制度
- 机房设备运维年终总结
- DBJ51-T 5072-2023 四川省基坑工程施工安全技术标准
- 制氧厂安全培训知识课件
- 高血压病人护理图文课件
评论
0/150
提交评论