暑假立体几何中的距离问题.doc_第1页
暑假立体几何中的距离问题.doc_第2页
暑假立体几何中的距离问题.doc_第3页
暑假立体几何中的距离问题.doc_第4页
暑假立体几何中的距离问题.doc_第5页
免费预览已结束,剩余11页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何中的距离问题【要点精讲】1距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P 在该平面上的射影为P,则线段PP的长度就是点到平面的距离;求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:找出或作出表示有关距离的线段;证明它符合定义;归到解某个三角形若表示距离的线段不容易找出或作出,可用体积等积法计算求之。异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为q ,它们的公垂线AA的长度为d ,在a 上有线段AE m ,b 上有线段AF n ,那么EF (“”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面:直接作面的垂线求解;观察点在与面平行的直线上,转化点的位置求解;观察点在与面平行的平面上,转化点的位置求解;利用坐标向量法求解点在面的斜线上,利用比例关系转化点的位置求解。立体几何的高线做法特殊图形的射影法;一般图形的垂面法空间距离的求法:(特别强调:立体几何中有关角和距离的计算,要遵循“一作,二证,三计算”的原则)(1)异面直线的距离:直接找公垂线段而求之;转化为求直线到平面的距离,即过其中一条直线作平面和另一条直线平行。转化为求平面到平面的距离,即过两直线分别作相互平行的两个平面。(2)点到直线的距离:一般用三垂线定理作出垂线再求解。(3)点到平面的距离求法:垂面法:借助于面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;等体积法:转化为求三棱锥的高;等价转移法。转化为平行直线上另一点到平面的距离;转化为平行平面上另一点到平面的距离;转化为与此相关的点到平面的距离,然后求出这两点到平面距离的比值;利用向量法: 例如已知正方体ABCD- A1B1C1D1的棱长为,则异面直线BD与B1C的距离为_(答:)。转化为平行平面距离. 练习(1)等边三角形的边长为,是边上的高,将沿折起,使之与所在平面成的二面角,这时点到的距离是_(答:);(2)点P是120的二面角-内的一点,点P到、的距离分别是3、4,则P到的距离为_(答:);(3)在正方体ABCDA1B1C1D1的侧面AB1内有一动点P到棱A1B1与棱BC的距离相等,则动点P所在曲线的形状为_(答:抛物线弧)。例如:如图,在四棱锥PABCD中,底面ABCD为矩形,侧棱PA底面ABCD,AB=,BC=1,PA=2,E为PD的中点.在侧面PAB内找一点N,使NE面PAC,并求出N点到AB和AP的距离.解:在面ABCD内过D作AC的垂线交AB于F,则.连PF,则在RtADF中设N为PF的中点,连NE,则NE/DF,DFAC,DFPA,DF面PAC,从而NE面PAC.N点到AB的距离,N点到AP的距离练习(1)长方体的棱,则点到平面的距离等于_(答:);(2)在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则A1到平面MBD的距离为_(答:a)。(3) 如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AEEB,F为CE上的点,且BF平面ACE()求证:AE平面BCE;()求二面角B-AC-E的大小;()求点D到平面ACE的距离。答:();()。4如图,正方体ABCDA1B1C1D1的棱长为1,E是A1B1的中点,则E到平面AB C1D1的距离为( B )ABCD 提示: E点转化为B1到平面的距离的一半。5如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.求点C到平面AEC1F的距离.转化为B点到平面的距离.6、如图,正方体ABCDA1B1C1D1的棱长为1,O是底面A1CBAB1C1D1DOA1B1C1D1的中心,则O到平面AB C1D1的距离为(B)A、B、C、D、提示:转化为的中点到平面AB C1D1的距离。 7、如图,已知长方体直线与平面所成的角为,垂直于,为的中点.(I)求异面直线与所成的角;(II)求平面与平面所成的二面角;(III)求点到平面的距离.解:在长方体中,以所在的直线为轴,以所在的直线为轴,所在的直线为轴建立如图示空间直角坐标系由已知可得,又平面,从而与平面所成的角为,又,从而易得(I)方法一:因为所以=易知异面直线所成的角为方法二:三线角法求解。 (II)方法一:易知平面的一个法向量设是平面的一个法向量,由即所以即平面与平面所成的二面角的大小(锐角)为、方法二:三垂线定理作二面角; 方法三:射影面积法;(III)方法一:点到平面的距离,即在平面的法向量上的投影的绝对值,所以距离=所以点到平面的距离为方法二:等体积法; 来求。方法三:做垂直的平面,然后做交线的垂线及高线,然后求值。8.(山东卷)如图,在正三棱柱ABC-中,所有棱长均为1,则点B到平面ABC的距离为.解:利用等体积法,易知VB1-ABC1=,所以点B到平面ABC的距离为9(江西卷)如图,已知三棱锥的侧棱两两垂直,且,是的中点求点到面的距离;法一:等体积法法二: 取BC中点,作平面ABC的垂直平面,然后作点O到平面的距离。18)(07年福建卷本小题满分12分) 如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1中点。 (1)求证:AB1面A1BD;(2)求二面角AA1DB的大小;(3)求点C到平面A1BD的距离。(提示:作面平面A1BD的行线,把C点到平面A1BD的距离可转化为中点到平面A1BD的距离)(4)直线与平面的距离:前提是直线与平面平行,利用直线上任意一点到平面的距离都相等,转化为求点到平面的距离。(5)两平行平面之间的距离:转化为求点到平面的距离。(6)球面距离(球面上经过两点的大圆在这两点间的一段劣弧的长度):求球面上两点A、B间的距离的步骤:计算线段AB的长;计算球心角AOB的弧度数;用弧长公式计算劣弧AB的长。例如(1)设地球半径为,在北纬圈上有两地,它们的纬度圈上的弧长等于,求两地间的球面距离(答:);(2)球面上有3点,其中任意两点的球面距离都等于大圆周长的,经过这3点的小圆的周长为,那么这个球的半径为_(答:);(3)三棱锥的三个侧面两两垂直,若四个点都在同一球面上,则此球面上两点A、B之间的球面距离是_(答:)。(4)设地球的半径为,若甲地位于北纬东经,乙地位于南纬东经,则甲、乙两地的球面距离为(D )(A) (B) (C) (D)5.(06浙江卷)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是(A) (B) (C) (D) G【考点分析】本题考查球面距的计算,基础题。解析:如图,点E、F在该球面上的球面距离为故选择B。6.(北京卷)已知三点在球心为,半径为的球面上,且那么两点的球面距离为_,球心到平面的距离为_.解:如右图,因为,所以AB是截面的直径,又ABR,所以OAB是等边三角形,所以AOB,故两点的球面距离为,于是O1OA30,所以球心到平面的距离OO1Rcos307.如题(18)图,在五面体中,四边形为平行四边形,平面,求:()直线到平面的距离;()二面角的平面角的正切值8.(2009重庆卷理)如题(19)图,在四棱锥中,且;平面平面,;为的中点,求:()点到平面的距离;()二面角的大小 . 9.(2009宁夏海南卷文)(本小题满分12分)如图,在三棱锥中,是等边三角形,PAC=PBC=90 ()证明:ABPC()若,且平面平面, 求三棱锥体积。10(2009江西卷理)(本小题满分12分)在四棱锥中,底面是矩形,平面,. 以的中点为球心、为直径的球面交于点,交于点.(1)求证:平面平面; (2)求直线与平面所成的角的大小;(3)求点到平面的距离.11(2009浙江卷理)(本题满分15分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离(2010)正方体ABCD-中,B与平面AC所成角的余弦值为A B C D(2010全国1)(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥S-ABCD中,SD底面ABCD,AB/DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .()证明:SE=2EB;()求二面角A-DE-C的大小 .18 (本小题满分12分)(2010)如图, 在四面体ABOC中, , 且()设为为的中点, 证明: 在上存在一点,使,并计算的值;()求二面角的平面角的余弦值。16、(2010本小题满分14分)如图,在四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。(1) 求证:PCBC;(2) 求点A到平面PBC的距离。20. (2010本小题满分12分)如图BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。(1) 求点A到平面MBC的距离;求平面ACM与平面BCD所成二面角的正弦值【解析】本题以图形拼折为载体主要考查了考查立体图形的空间感、点到直线的距离、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力解法一:(1)取CD中点O,连OB,OM,则OBCD,OMCD.又平面平面,则MO平面,所以MOAB,A、B、O、M共面.延长AM、BO相交于E,则AEB就是AM与平面BCD所成的角.OB=MO=,MOAB,MO/面ABC,M、O到平面ABC的距离相等,作OHBC于H,连MH,则MHBC,求得:OH=OCsin600=,MH=,利用体积相等得:。(2)CE是平面与平面的交线.由(1)知,O是BE的中点,则BCED是菱形.作BFEC于F,连AF,则AFEC,AFB就是二面角A-EC-B的平面角,设为.因为BCE=120,所以BCF=60. ,所以,所求二面角的正弦值是.【点评】传统方法在处理时要注意到辅助线的处理,一般采用射影、垂线、平行线等特殊位置的元素解决解法二:取CD中点O,连OB,OM,则OBCD,OMCD,又平面平面,则MO平面.以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图.OB=OM=,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),(1)设是平面MBC的法向量,则,由得;由得;取,则距离(2),.设平面ACM的法向量为,由得.解得,取.又平面BCD的法向量为,则设所求二面角为,则.【点评】向量方法作为沟通代数和几何的工具在考察中越来越常见,此类方法的要点在于建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,但计算必须慎之又慎(19)(2010本小题满分12分)已知三棱锥PABC中,PAABC,ABAC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.()证明:CMSN;()求SN与平面CMN所成角的大小.本节小结空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离求距离的一般方法和步骤是:一作作出表示距离的线段;二证证明它就是所要求的距离;三算计算其值此外,我们还常用体积法求点到平面的距离求点到平面的距离常用方法是直接法与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论