




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 确知信号分析2.2.1周期信号的傅里叶级数(1)基本原理若一周期信号,其中为整数,成为信号的周期。若周期信号在一个周期内可积,则可通过傅立叶级数对该信号进行展开。其傅立叶展开式如(21)式所示: (21)其中,为信号周期;为信号的基波;为傅立叶展开系数,其物理意义为频率分量的幅度和相位。式21表明:信号可以展开成一系列频率为的整数倍的正弦、余弦信号的加权叠加,其中相应频率分量的加权系数即为,因此可以用周期信号的傅立叶展开来重构该周期信号,其逼进程度与展开式的项数有关。(2)举例设周期信 号一个周期的波形为,求该信号傅里叶级数展开式,并用MATLAB画出傅里叶级数展开后的波形,并通过展开式项数的变化考察其对的逼近程度,考察其物理意义。解:注:源代码:clear all;N=20;%取展开式的项数为2N+1项%可以改为N=input(input N:)T=1;%周期为1fs=1/T;N_sample=128;%为了画波形,设置每个周期的采样点数dt=1/ N_sample;%时间分辨率t=0:dt:10*T-dt;%取10个周期n=-N:N;Fn=sinc(n/2).*exp(-j*n*pi/2);%求傅立叶系数Fn(N+1)=0;%当n=0时,代入Fn得Fn=0,由于数组的序号是从1开始的,即n=-N时对%应Fn(1), n=0时对%应Fn(n+1),即n=N时对%应Fn(2N+1)ft=zeros(1,length(t);%建立一个全零数组,其长度和原始信号长度相同,用来存放由傅里叶%展开恢复的信号for m=-N:N;%一共2N+1项累加。ft=ft+Fn(m+N+1)*exp(j*2*pi*m*fs*t);%Fn是一个数组,而MATLAB中数组中元素的序%号是从1开始的,故Fn序号是从1开始的,到2N1结束,该语句中体现为为Fn(m+N+1)%而当n=0时,Fn=0,在数组中的位置为第N+1个元素,故令Fn(N+1)=0endplot(t,ft)仿真结果:N=100时,N=20时,可以看出:用周期信号的傅立叶展开来重构该周期信号,其逼进程度与展开式的项数有关。2.2.2信号的傅里叶变换及其反变换(1)基本原理对于非周期信号,满足绝对可积的条件下,可利用傅里叶变换对其进行频域分析。,其中,称为信号傅里叶变换,表示了该信号的频谱特性。在数字信号处理中,需要利用离散傅立叶变换(DFT)计算信号的傅里叶变换,现在考察一下信号的傅里叶变换与其离散傅立叶变换之间的关系。将信号按照时域均匀抽样定理进行等间隔抽样后,得到序列,其中,为抽样间隔,则由数字信号处理的知识可知,序列的离散傅立叶变换为其中,N为采样点数。而在一段时间内的傅立叶变换为得到在一段时间内的傅立叶变换是连续谱,而对进行离散傅立叶变换得到的是离散谱,为了比较它们之间的关系,对也进行等间隔抽样,且抽样间隔为,即其频率分辨率,则在频率范围内,可以看到,的离散傅里叶变换与在一段时间内的傅立叶变换的抽样成正比。由于N点离散傅里叶变换具有的性质,故信号连续谱的负半轴部分可以通过对的平移得到。 需要注意的是信号的离散傅立叶变换只和信号在一段时间内的傅立叶变换有关,而由公式21,的频谱是在时间上得到的。所以上述计算所得到的并不是真正的信号频谱,而是信号加了一个时间窗后的频谱。当信号是随时间衰减的或是时限信号,只要时间窗足够长,可以通过这种方法获得信号的近似频谱。因此,用DFT计算的信号频谱精度依赖于信号、抽样的时间间隔和时间窗的大小。一般情况下,对于时限信号,在抽样时间间隔小,即抽样频率高的情况下能获得较为精确的信号频谱。计算信号的离散傅里叶变换在数字信号处理中有一种高效算法,即快速傅里叶变换FFT,Matlab中也有专门的工具,下面简要介绍:fft(x),x是离散信号,或对模拟信号取样后的离散值。ifft(x),,x是对信号进行快速傅里叶变换后的离散谱。源代码一:利用fft,fftshift定义函数T2F计算信号的傅立叶变换function f,sf=T2F(t,st)%该子函数需要两个参数t和st。%t离散时间;st离散信号dt=t(2)-t(1);% 时间分辨率T=t(end);df=1/T;%频率分辨率N=length(st);%离散傅立叶变换长度f=-N/2*df:df:N/2*df-df;%设定频谱区间,注意要关于原点对称,共有N个点,包括0点,%故要减去一个dfsf=fft(st);sf=T/N*fftshift(sf);%信号的频谱与离散傅立叶变换之间的关系,fftshift(x)是将信号%的频谱x进行移位,与原点对称。源代码二:利用ifft,fftshift定义函数T2F计算信号的傅立叶反变换function t,st= F2T (f,sf)%f离散的频率;sf信号的频谱df=f(2)-f(1); %频率分辨率Fmx=f(end)-f(1)+df;%频率区间长度dt=1/Fmx; %已知频率区间长度时,求时间分辨率,由前面频率分辨率公式f=df=1/T,%T=dt*N,得到f=df=1/ (dt*N),故dt=1/(df*N)=1/Fmx,即时间分辨率N=length(sf);T=dt*N; %信号持续时间t=0:dt:T-dt;%离散傅立叶反变换,是T2F的逆过程sff=fftshift(sf); %把对称的频谱进行平移,平移后同T2F中的sfst=Fmx*ifft(sff); %由于T2F中求信号频谱在DFT基础上乘了一个因子T/N,反变换求信号时要乘以其倒数即N / T1/dt,正好等于Fmx。(2)举例设非周期信号,求该信号的傅里叶变换,用MATLAB画出傅里叶变换后的频谱,并对频谱进行反变换,画出的波形。解:主程序:clear allT=1;N_sample=128;%为了画波形,设置每个周期的采样点数dt=1/ N_sample;%时间分辨率t=0:dt:T-dt;st=ones(1, N_sample/2), -ones(1, N_sample/2);%依据T将信号离散化subplot(311);plot(t,st);axis(0 1 -2 2);xlabel(t);ylabel(s(t);subplot(312) ;f,sf=T2F(t,st) ;plot(f,abs(sf) ;hold on ;%画出sf的幅度谱,不含相位axis(-10 10 0 1);xlabel(f);ylabel(|S(f)|);sff=T2*j*pi*f*0.5.*exp(-j*2*pi*f*T).*sinc(f*T*0.5).*sinc(f*T*0.5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家居中的物联网关键节点应用-洞察阐释
- 数据驱动决策提升智能化转型效果
- 高中美术跨学科教学中的学生自主学习与合作学习
- 2025至2030年中国温度/湿度/振动三综合试验箱行业投资前景及策略咨询报告
- 2025至2030年中国汽车后转向灯行业投资前景及策略咨询报告
- 2025至2030年中国水产养殖技术行业投资前景及策略咨询报告
- 2025至2030年中国橡胶防水油膏行业投资前景及策略咨询报告
- 2025至2030年中国梳草碎根机行业投资前景及策略咨询报告
- 2025至2030年中国松仁粽子糖行业投资前景及策略咨询报告
- 2025至2030年中国智能数显变送控制仪行业投资前景及策略咨询报告
- 2025年版!药食同源物质目录(106种)
- 2025年数字道闸项目市场调查研究报告
- 校园二手交易平台设计:技术实现与运营策略
- 2025至2030中国氨纶行业发展现状及未来趋势研究报告
- 浙江开放大学2025年《社会保障学》形考任务4答案
- 机电应聘笔试试题及答案
- 中国海洋工程行业市场发展分析及前景趋势与投资前景研究报告
- 2024年生物制造产业蓝皮书-华谷研究院
- 9 天上有颗南仁东星 课件-课堂无忧新课标同步核心素养课堂
- 车辆日常安全检查课件
- 登革热疫情应急处置桌面推演方案(2025年)
评论
0/150
提交评论