



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽象函数的对称性、奇偶性与周期性常用结论一.概念:指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数 1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期。2、复合函数的奇偶性(1)复合函数为偶函数,则而不是;复合函数为奇函数,则而不是。(2)两个特例:为偶函数,则;为奇函数,则(3)为偶(或奇)函数,等价于单层函数关于直线成轴对称(或关于点中心对称)。3、函数的对称性:(1)中心对称即点对称:点 (2)轴对称:对称轴方程为:。关于直线函数关于直线成轴对称。关于直线成轴对称。二、函数对称性的几个重要结论(一)函数图象本身的对称性(自身对称)若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。1、 图象关于直线对称推论1: 的图象关于直线对称推论2、 的图象关于直线对称2、 的图象关于点对称推论1、 的图象关于点对称推论2、 的图象关于点对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数与图象关于Y轴对称2、奇函数与图象关于原点对称函数3、函数与图象关于X轴对称4、互为反函数与函数图象关于直线对称5、函数与图象关于直线对称 推论1:函数与图象关于直线对称推论2:函数与 图象关于直线对称6、函数对称性的应用 (1)若,即三、函数周期性的几个重要结论*1、 的周期为*2、 的周期为*3、的周期为4、 的周期为5、 的周期为6、 的周期为7、的周期为8、若*9、有两条对称轴和 周期*10、有两个对称中心和 周期*11、有一条对称轴和一个对称中心的四、用函数奇偶性、周期性与对称性解题的常见类型(一).求函数值1.设是上的奇函数,当时,则等于( )(A)0.5; (B)-0.5; (C)1.5; (D)-1.5.2已知是定义在实数集上的函数,且,求的值. 3.若是以2为周期的偶函数,当时,试比较、的大小.(二)求函数解析式4.设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.5设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.(三)判断函数奇偶性6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.(四)确定函数图象与轴交点的个数7.设函数对任意实数满足,判断函数图象在区间上与轴至少有多少个交点.(五)在数列中的应用8.在数列中,求数列的通项公式,并计算应用训练:1设f(x)是定义在(,)上的函数,且满足f(10x)f(10x),f(20x)f(20x),则f(x)是( )。A偶函数,又是周期函数 B偶函数,但不是周期函数C奇函数,又是周期函数 D奇函数,但不是周期函数2设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x,则f(7.5)=( )。A0.5 B0.5 C1.5 D1.54函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象( )。A关于直线x5对称 B关于直线x1对称 C关于点(5,0)对称 D关于点(1,0)对称6f(x) 是R上的奇函数f(x)= f(x+4) ,x0,2时f(x)=x,求f(2007) 的值 7已知f(x)是定义在R上的函数,且满足f(x+2)1f(x)=1+f(x),f(1)=2,求f(2009) 的值 8设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时f(x)x,则f(7.5)= 9已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)=2x+1,则当时求f(x)的解析式10已知f(x)是定义在R上的函数,且满足f(x+999)=,f(999+x)=f(999x), 试判断函数f(x)的奇偶性.11已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)是减函数,求证当时f(x)为增函数12f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a5,9且f(x)在5,9上单调.求a的值. 13已知f(x)是定义在R上的函数,f(x)= f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高危合同模板(3篇)
- 高空作业施工合同范本(3篇)
- pdp心理测试题及答案
- 2025洪水公务员面试题目及答案
- 公司董事会秘书聘任合同范本:信息枢纽与协调
- 被虚假广告误导签订的房屋租赁合同纠纷处理协议
- 包含婚前财产约定的个人自愿离婚协议书范本
- 地铁隧道工程工地施工工人安全培训合同
- 5G技术驱动的文物数字化保护网络-洞察及研究
- 环保项目班组劳动合同
- DB43-T 2724-2023 农村公路养护工程预算编制办法及定额
- CJ/T 480-2015高密度聚乙烯外护管聚氨酯发泡预制直埋保温复合塑料管
- CJ/T 197-2010燃气用具连接用不锈钢波纹软管
- 儿科试题及答案泌尿感染
- 肥胖症诊疗指南(2024年版)解读
- 入股瑜伽店协议书
- 旅游团队境外医疗援助补充协议
- JJF 2184-2025 电子计价秤型式评价大纲(试行)
- 联通智慧矿山协议合同
- 混凝土考试试题及答案
- 《小学交通安全教育》课件
评论
0/150
提交评论