基于单片机直流电机控制器设计毕业设计论文.docx_第1页
基于单片机直流电机控制器设计毕业设计论文.docx_第2页
基于单片机直流电机控制器设计毕业设计论文.docx_第3页
基于单片机直流电机控制器设计毕业设计论文.docx_第4页
基于单片机直流电机控制器设计毕业设计论文.docx_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘 要本文是对直流电机PWM控制器设计的研究,主要实现对电机的控制。本设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示和测量;由命令输入模块、光电隔离模块及H型驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,不断给光电隔离电路发送PWM波形,H型驱动电路完成电机正反转控制.在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。关键词:AT89C51单片机;PWM调速;正反转控制。AbstractThis article is a DC motor PWM speed control design study, the main achievement of motor control. This course is primarily designed to achieve PWM speed controller for forward and reverse, acceleration, deceleration, and stop such an operation. And to achieve the circuit simulation. To achieve system, microcomputer control, in the design, using AT89C51 microcontroller control system as a whole, the core of the control circuit, accompanied by a variety of shows, drive module enables the motor speed parameter display and measurement; from the command input module, Optical isolation module and H-drive module. With the stand-alone keyboard with a break as a command input, single-chip in the process control, continuing to the optical isolation circuit to send PWM waveform, H-type motor driving circuit to complete positive inversion control. In the design, using PWM speed mode, by changing the PWM duty cycle to change the motor armature voltage, so as to realize the speed of the motor. Design of the control system hardware structure with a large number of integrated circuit modules, greatly simplifying the hardware circuitry to improve stability and reliability of the system so that the whole system performance is improved.Key words: AT89C51 microcontroller; PWM speed; positive inversion control.摘要1ABSTRACT2第1章概述41.1题目背景和意义41.2题目国内外研究现状61.3PWM控制技术简述71.4完成目标8第2章系统论述82.1设计思路82.2基本原理82.3 AT89C2051单片机介绍92.3.1 51单片机简介92.3.2功能102.4总体设计框图14第3章直流电机单元电路设计与分析153.1设计思路153.2 方案论证与比较153.3直流电机驱动模块163.3.1 直流电机类型173.3.2 直流电机结构173.3.3 直流电机工作原理173.3.4 直流电机主要技术参数183.3.5 直流电机PWM调速原理183.3.6 电机驱动模块的电路设计213.3.7 程序设计流程图233.4 直流电机的中断键盘控制模块233.4.1 外部中断设置233.4.2 外部中断扩展方法243.5 1602LCD液晶显示模块263.5.1 引脚分布和接口信号说明263.5.2 LCD液晶电路273.6霍尔元件测速电路28第4章直流电机PWM控制系统的实现294.1 总电路图294.2 总电路功能介绍29结束语30致谢31参考文献321概述1.1题目背景和意义在现代工业和生活中,电动机作为电能转换的传动装置被广泛应用,大到机械、冶金、石油化学、国防等工业部门中,小到机器人和一些生活家用电器,随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。长期以来,自动调速电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高效率,优异的动态特性,现在仍是大多数调速控制电动机的最优选择。以前电动机大多使用由模拟电路组成的控制柜进行控制,现在单片机已经开始取代模拟电路作为电机控制器。当前电机控制器的发展方向越来越趋于多样化和复杂化,现有的专用集成电路未必能满足苛刻的新产品开发要求,为此可考虑开发电机的新型单片机控制器,因此研究直流电机的速度控制,有着非常重要的意义。电气传动技术以电动机控制为控制对象,以微电子装置为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成电气传动控制系统。因电机种类的不同分为直流电机传动、交流电机传动、步进电机传动、伺服电机传动等等。众所周知,与交流调速系统相比,由于直流调速系统的调速精度高,调速范围广,变流装置控制简单,长期以来在调速传动占统治地位。在要求调速性能较高的场合,一般都采用直流电气传动。目前,通过对电动机的控制,将电能转换为机械能进而控制工作机械按给定的运动规律运行且使之满足特定要求的新型电气传动自动化技术广泛应用与国民经济的各个领域。三十多年来,直流电机传动经历了重大的变革。首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机组及水银整流装置使直流电气传动完成了一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性以及低成本。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以代替。由于直流电气传动技术的研究和应用已达到比较成熟的地步,应用相当普遍,尤其是全数字直流系统的出现,更提高了直流调速系统的精度级可靠性。所以,今后一个阶段在调速要求较高的场合,如轧钢厂、海上钻井平台等,直流调速仍然处于主要地位。早期直流传动的控制系统采用模拟分离器件较多,使得模拟直流传动系统的控制精度及可靠性较低,随着计算机控制技术的发展,直流传动系统已经广泛使用微机,实现了全数字化控制。由于微机以数字信号工作,控制手段灵活方便,抗干扰能力强。所以,全数字直流天数控制精度和可靠性比模拟直流调速系统大大提高。而且通过系统总线全数字化控制系统,能与管理计算机、过程计算机、远程电控装置进行交换,实现生产过程的自动化分级控制。所以,直流传动控制采用微机实现全数字化,使直流调速系统进入一个崭新的阶段。1.2题目国内外研究现状直流电机问世已有一百四十多年的历史。在设计和制造技术上有很大进步,新材料、新技术的应用以及整流电源的普及,促进了一般工业用直流电机的不断扩大,品种的日益繁多。从小至数瓦,大到万余千瓦,广泛地用于冶金、矿山、煤炭、起重运输、机床制造、纺织印染等各个部门中,特别是近几年电子计算技术广泛应用在直流电机设计制造中。从直流电动机的演变历史,也可以纵观直流电动机的发展历史和动向、从四十年代后期到五十年代的前期,直流电动机的电源主要是采用M-G电动发电机组,六十年代初,电动发电机组电源已被水银整流器逐渐代替,到六十年代后期,由于可控硅整流装置的出现,并得到迅速发展,可控硅整流电源已占统治地位。由于直流电源供电方式的不断更新换代,特别是在最近的十几年期问,进一步促使了直流电动机的单机功率、转速不断提高,目前朝着高速、大功率方向发展。另外,由于绝缘技术和分析技术的进步,直流电动机已迅速向小型轻量,低惯量方面发展。 常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREGK6RA24、ABB公司的PAD/PSD等等。随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。随着计算机,微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。电动机控制技术的发展得力于微电子技术,电力电子技术,传感器技术,永磁材料技术,微机应用技术的最新发展成就。变频技术和脉宽调制技术已成为电动机控制的主流技术。正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。其中,脉宽调制(PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。由于有微处理器和传感器作为新一代运动控制系统的组成部分,所以又称这种运动控制系统为智能运动控制系统。所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。在那些对电动机控制系统的性能要求较高的场合(如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。微机,出现于20世纪70年代,随着大规模及超大规模集成电路制造工艺的迅速发展,微机的性能越来越高,价格越来越便宜。此外,电力电子的发展,使得大功率电子器件的性能迅速提高。因此就有可能比较普遍的应用微机来控制电机,完成各种新颖的、高性能的控制策略,使电机的各种潜在的能力得到充分的发挥,十点几的性能更符合使用要求,还可以制造出各种便于控制的新型电机,使电机出现新的面貌。比较简单的电机微机控制,只要用微机控制继电器或电子开关元件使电路开通或关断就可以了。在各种机床设备及生产流水线中,现在已普遍采用微机的可编程控制器,按一定的规律控制各类电机的动作。对于复杂的电机控制,则要用微机控制电机的电压、电流、转矩、转速、转角等等,使电机按给定的指令准确工作。通过微机控制,可是电机的性能有和大的提高。1.3PWM控制技术简述PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。目前,PWM整流控制技术的研究取得了一定的进展。在电压型PWM整流器控制技术方面,滞环电流控制、瞬时值比较法电流控制、固定开关频率的PWM控制、预测电流解耦控制、非线性系统反馈解耦控制、单周期控制、无电流传感器的三相PWM整流器控制策略均得到研究。在电流型PWM整流控制方面,相继对电流型PWM整流器的Dalta调制、空间矢量调制、预测控制、电网不平衡条件下的控制、非线性控制进行了研究。1.4完成目标采用PWM控制控制技术,当按下中断独立键盘的正传和加速按钮的时候,单片机输出PWM信号给驱动电路,使得电机正向加速转动,与此同时由测速电路把转速反馈给单片机在显示器上显示出来。当按下反转和加速的时候电机反向加速转动,与此同时由测速电路把转速反馈给单片机在显示器上显示出来。如上所述,电机可完成正传、反转、加速、减速、停止、在显示器显示转速。2系统论述2.1设计思路直流电机PWM控制系统的主要功能包括:直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便的读出电机转速的大小,能够很方便的实现电机的智能控制。其间,还包括直流电机的直接清零、启动(置数)、暂停、连续功能。该直流电机系统由以下电路模块组成:振荡器和时钟电路:这部分电路主要由80C51单片机和一些电容、晶振组成。设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。设计控制部分:主要由80C51单片机的外部中断扩展电路组成。设计显示部分:包括液晶显示部分和LED数码显示部分。液晶显示部分由1602LCD液晶显示模块组成; LED数码显示部分由七段数码显示管组成。直流电机PWM控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。2.2基本原理主体电路:即直流电机PWM控制模块。这部分电路主要由80C51单片机的I/O端口、定时计数器、外部中断扩展等控制直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便的读出电机转速的大小和了解电机的转向,能够很方便的实现电机的智能控制。其间,还包括直流电机的直接清零、启动(置数)、暂停、连续功能。其间是通过80C51单片机产生脉宽可调的脉冲信号并输入到L298驱动芯片来控制直流电机工作的。该直流电机PWM控制系统由以下电路模块组成:设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。设计控制部分:主要由80C51单片机的外部中断扩展电路组成。设计显示部分:包括液晶显示部分和LED数码显示部分。液晶显示部分由1602LCD液晶显示模块组成。直流电机PWM控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。2.3 AT89C2051单片机介绍AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROMFalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。51单片机是对所有兼容Intel 8031指令系统的单片机的统称。该系列单片机的始祖是Intel的8031单片机,后来随着Flash rom技术的发展,8031单片机取得了长足的进展,成为应用最广泛的8位单片机之一,其代表型号是ATMEL公司的AT89系列,它广泛应用于工业测控系统之中。很多公司都有51系列的兼容机型推出,今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(算术运算、逻辑运算、数据传送、中断处理等)的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路(I/O)、串行通信口(SCI)、脉宽调制电路(PWM)、定时计算器、A/D转换器及D/A转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效的完成设计者事先规定的任务,这样的一块具有一台计算机的属性,可以构成一个最小而完善的的计算机系统的电路芯片就称为单片微型计算机,简称单片机。目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS(互补金属氧化物半导体)化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。CMOS化CMOS(ComplementaryMetalOxideSemiconductor)电路的特点是低功耗、高密度、低速度、低价格。采用双极型半导体工艺的TTL电路速度快,但功耗和芯片面积较大。随着技术和工艺水平的提高,又出现了HMOS(高密度、高速度MOS)和CHMOS工艺。低功耗化单片机的功耗已从Ma级,甚至1uA以下;使用电压在36V之间,完全适应电池工作。低功耗化的效应不仅是功耗低,而且带来了产品的高可靠性、高抗干扰能力以及产品的便携化。低电压化几乎所有的单片机都有WAIT、STOP等省电运行方式。允许使用的电压范围越来越宽,一般在36V范围内工作。低电压供电的单片机电源下限已可达12V。目前0.8V供电的单片机已经问世。低噪声与高可靠性为提高单片机的抗电磁干扰能力,使产品能适应恶劣的工作环境,满足电磁兼容性方面更高标准的要求。大容量化以往单片机内的ROM为1KB4KB,RAM为64128B。但在需要复杂控制的场合,该存储容量是不够的,必须进行外接扩充。为了适应这种领域的要求,运用新的工艺,使片内存储器大容量化。目前,单片机内ROM最大可达64KB,RAM最大为2KB。高性能化主要是指进一步改进CPU的性能,加快指令运算的速度和提高系统控制的可靠性。采用精简指令集(RISC)结构和流水线技术,可以大幅度提高运行速度。小容量、低价格化与上述相反,以4位、8位机为中心的小容量、低价格化也是发展动向之一。这类单片机的用途是把以往用数字逻辑集成电路组成的控制电路单片化,可广泛用于家电产品。外围电路内装化这也是单片机发展的主要方向。随着集成度的不断提高,有可能把众多的各种外围功能器件集成在片内。除了一般必须具有的CPU、ROM、RAM、定时器/计数器等以外,片内集成的部件还有模/数转换器、DMA控制器、声音发生器、监视定时器、液晶显示驱动器、彩色电视机和录像机用的锁相电路等。串行扩展技术在很长一段时间里,通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。随着低价位OTP(OneTimeProgram)及各种类型片内程序存储器的发展,加之外围接口不断进入片内,推动了单片机“单片”应用结构的发展。特别是IC、SPI等串行总线的引入,可以使单片机的引脚设计得更少,单片机系统结构更加简化及规范化。2.3.1 单片机的特点单片机把微型计算机的主要功能都集成在一块芯片上,即一块芯片就是一个微型计算机。因此,单片机具有以下特点:(1)较高的性价比目前国内市场上,有些单片机的芯片价格只有几十元人民币,再加上很少的外围器件,就可以构成一台多功能的控制机构。(2)集成度好,体积小,可靠性好单片机把各种功能不见集成在一块芯片上,内部采用总线结构,减少了各芯片之间的连线大大的提高了单片机的可靠性及其抗干扰能力。(3)控制功能强单片机指令系统、硬件资源丰富,能充分满足工业控制的各种要求。(4)低电压,低功耗。(5)开发周期短,易于产品化可根据需要构成各种规模的应用系统。2.3.2 51单片机引脚图和引脚功能 (1)51单片机引脚图图2-1 51单片机引脚(2)51单片机引脚功能40个引脚按引脚功能大致可分为4个种类:电源、时钟、控制和I/O引脚。 电源: VCC - 芯片电源,接+5V; VSS - 接地端;注:用万用表测试单片机引脚电流一般为0v或者5v,这是标准的TTL电平,但有时候在单片机程序正在工作时候测试结果并不是这个值而是介于0v-5v之间,其实这之是万用表反映没这么快而已,在某一个瞬间单片机引脚电流还是保持在0v或者5v的。 时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 控制线:控制线共有4根, ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ALE功能:用来锁存P0口送出的低8位地址 PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 PSEN:外ROM读选通信号。 RST/VPD:复位/备用电源。 RST(Reset)功能:复位信号输入端。 VPD功能:在Vcc掉电情况下,接备用电源。 EA/Vpp:内外ROM选择/片内EPROM编程电源。 EA功能:内外ROM选择端。 Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 I/O线80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。2.4总体设计框图系统组成:直流电机PWM调速方案如图2-2所示:方案说明:直流电机PWM调速系统以AT89C2051单片机为控制核心,由命令输入模块、LCD显示模块及电机驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给直流电机驱动芯片发送PWM波形,H型驱动电路完成电机正,反转控制;同时单片机不停的将从键盘读取的数据送到LCD显示模块去显示图2-2系统框图2.5 方案论证与比较(1)显示电路选择与比较方案1:采用数码管显示电路,该硬件电路简单,编程也比较简单。视角范围大,亮度高,显示是效果好,但是只能显示简单数字字母等有限的字符,不能满足本设计要求。故,不采用数码管显示电路。方案2:采用1602液晶显示,硬件电路简单,编程容易。可以显示字母和数字,以及简单的图像。能满足本设计要求,显示清晰度可以通过调节偏压端电压来改变对比度,从而实现清晰度调整。显示效果较好,还可以滚动显示等,显示灵活。综上所述,数码管显示电路不能满足本设计的要求;1602液晶显示可以显示数字、英文、汉字、图片等能满足本设计要求。故,采用1602液晶显示电路作为本设计的显示电路模块。(2)键盘电路选择与比较方案1:独立式键盘,独立式键盘硬件电路极为简单,程序也非常简单。容易开发,开发周期短,使用方便简单。方案2:矩阵式键盘,矩阵式键盘硬件电路也比较简单,编程较为复杂。不容易开发,在按键较多的时候,与独立式键盘相比较经济,占用IO端口较少,但编程较独立式键盘难的多,由于本设计要求的键盘按键数量较少,采用独立式键盘较方便,开发难度大大降低,开发周期缩短,也比较经济。故在本设计中采用独立式键盘。经上述比较后采用独立式键盘作为本设计的键盘电路模块。(3)测速电路的选择与比较一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。本说明书中给出两种转速测量方案,经过查找资料、构思和设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。下面就看一下我们对两套设计方案的简要说明。方案1:霍尔传感器测量方案 霍尔传感器是利用霍尔效应进行工作的,其核心元件是根据霍尔效应原理制成的霍尔元件。本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。霍尔转速传感器的结构原理图如图2-3所示。传感器的定子上有2 个互相垂直的绕组A 和B。在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连它们的霍尔电极串联后作为传感器的输出。第三章直流电机单元电路设计与分析 图2-3 霍尔转速传感器的结构原理图 霍尔转速传感器的结构原理图缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。方案2:光电传感器 转子由一直流调速电机驱动,可实现大转速范围内的无级调速。转速信号由光电传感器拾取,使用时应先在转子上做好光电标记,具体办法可以是:将转子表面擦干净后用黑漆(或黑色胶布)全部涂黑,再将一块反光材料贴在其上作为光电标记然后将光电传感器(光电头)固定在正对光电标记的某一适当距离处。光电头采用低功耗高亮度LED,光源为高可靠性可见红光,无论黑夜还是白天,或是背景光强有大范围改变都不影响接收效果。光电头包含有前置电路,输出05V的脉冲信号。接到单片机89C51的相应管脚上,通过89C51内部定时/计时器T0、T1及相应的程序设计,组成一个数字式转速测量系统。优点:这种方案使用光电转速传感器具有采样精确,采样速度快,范围广的特点。由于材料方面的原因,我们所采用的是霍尔传感器。3直流电机单元电路设计与分析3.1设计思路本题要求设计一个上位机直流电机控制系统。利用键盘作为输入设备,输入电机控制信号;液晶显示器件作为显示,与用户进行人机交互;利用串行通信接口与上位机进行通信,接收上位机发送过来的控制命令。从PC机发来的控制命令经单片机系统接收后,产生电机控制信号,并提供给电机驱动电路控制直流电机正常运转并正常显示转速。3.2最小系统设计单片机主要擅长系统控制,而不适合做复杂的数据处理,在设计单片机最小系统时我们选用AT89C52单片机作为MCU,一个典型的单片机最小系统一般由时钟电路、复位电路、键盘电路、显示电路等部分组成3.2.1最小系统结构框图 图3-1 单片机最小系统结构框图3.2.2系统晶振电路单片机内部具有一个高增益反相放大器,用于构成振荡器。通常在引脚XTALl和XTAL2跨接石英晶体和两个补偿电容构成自激振荡器,系统时钟电路结构如图所示,我们选择11.0592mhz的石英晶体,补偿电容通常选择20-30pF左右的瓷片电容。图3-2 系统晶振电路3.2.3复位电路单片机小系统采用上电自动复位和手动按键复位两种方式实现系统的复位操作。上电复位要求接通电源后,自动实现复位操作。手动复位要求在电源接通的条件下,在单片机运行期间,用按钮开关操作使单片机复位。复位电路结构如图所示。上电自动复位通过电容C3充电来实现。手动按键复位是通过按键将电阻R2与VCC接通来实现。在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。AT89C51的上电复位电路只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1F。上电复位的工作过程是在加电时,电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序,所以需上电复位电路。 图3-3 复位电路3.2.4键盘电路 图为外部中断扩展方法,X1代表是加速信号,X1=0表示加速;X2代表减速信号,X2=0表示减速;X3代表正转信号,X3=0表示正转;X4代表反转信号,X4=0表示反转;X5代表停止信号,X5=0表示停止处理。图3-4 键盘电路3.2.5显示电路液晶显示模块已作为很多电子产品的通过器件,如在计算器、万用表、电子表及很多家用电子产品中都可以看到,显示的主要是数字、专用符号和图形。在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、液晶显示器。发光管和LED数码管比较常用,软硬件都比较简单,在此毕业设计中选用的是1602液晶显示 引脚分布和接口信号说明(1)引脚分布1602液晶显示共有16个引脚,其引脚分布如图3-5所示。图3-5 1602液晶显示模块引脚分布(2)引脚功能1602引脚功能如表3-1所示表3-1 1602引脚功能编号符号引脚说明编号符号引脚说明1VSSVSS为地电源9D2Data I/O2VDDVDD接5V正电源10D3Data I/O3VEE液晶显示偏压信号11D4Data I/O4RS0输入指令,1输入数据12D5Data I/O5R/W0写入指令或数据,1读信息13D6Data I/O6E1读取信息,10执行指令14D7Data I/O7D0Data I/O15BLA背光源正极8D1Data I/O16BLK背光源负极(3)1602接线图 1602液晶显示电路图3-6 1602接线图3.2.6最小系统电路图图3-7最小系统接线图3.3直流电机驱动模块主要由一些二极管、电机和L298直流电机驱动模块(内含CMOSS管、三太门等)组成。现在介绍下直流电机的运行原理3.3.1 直流电机类型直流电机可按其结构、工作原理和用途等进行分类,其中根据直流电机的用途可分为以下几种:直流发电机(将机械能转化为直流电能)、直流电动机(将直流电能转化为机械能)、直流测速发电机(将机械信号转换为电信号)、直流伺服电动机(将控制信号转换为机械信号)。下面以直流电动机作为研究对象。3.3.2 直流电机结构直流电机由定子和转子两部分组成。在定子上装有磁极(电磁式直流电机磁极由绕在定子上的磁绕提供),其转子由硅钢片叠压而成,转子外圆有槽,槽内嵌有电枢绕组,绕组通过换向器和电刷引出,直流电机结构如图3-8所示图3-8直流电动机结构3.3.3 直流电机工作原理直流电机磁极N、S间装着一个可以转动的铁磁圆柱体,圆柱体的表面上固定着一个线圈abcd。当线圈中流过电流时,线圈受到电磁力作用,从而产生旋转。根据左手定则可知,当流过线圈中电流改变方向时,线圈的受方向也将改变,因此通过改变线圈电路的方向实现改变电机的方向。3.3.4 直流电机主要技术参数直流电机的主要额定值有:额定功率Pn:在额定电流和电压下,电机的负载能力。额定电压Ue:长期运行的最高电压。额定电流Ie:长期运行的最大电流。额定转速n:单位时间内的电机转动快慢。以r/min为单位。励磁电流If:施加到电极线圈上的电流。3.3.5 直流电机PWM调速原理(1)直流电机转速直流电机的数学模型可用图表示,由图3-9可见电机的电枢电动势Ea的正方向与电枢电流Ia的方向相反,Ea为反电动势;电磁转矩T的正方向与转速n的方向相同,是拖动转矩;轴上的机械负载转矩T2及空载转矩T0均与n相反,是制动转矩。图3-9 直流电机的数学模型根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式1.1:U=Ea-Ia(Ra+Rc)式1.1式1.1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷接触电阻的总和;Rc是外接在电枢回路中的调节电阻。由此可得到直流电机的转速公式为:n =Ua-IR/Ce式1.2式1.2中,Ce为电动势常数,是磁通量。由1.1式和1.2式得n =Ea/Ce式1.3 由式1.3中可以看出,对于一个已经制造好的电机,当励磁电压和负载转矩恒定时,它的转速由回在电枢两端的电压Ea决定,电枢电压越高,电机转速就越快,电枢电压降低到0V时,电机就停止转动;改变电枢电压的极性,电机就反转。(2)PWM电机调速原理对于直流电机来说,如果加在电枢两端的电压为3-10所示的脉动电流压(要求脉动电压的周期远小于电机的惯性常数),可以看出,在T不变的情况下,改变T1和T2宽度,得到的电压将发生变化,下面对这一变化进一步推导。图3-10 施加在电枢两端的脉动电压设电机接全电压U时,其转速最大为Vmax。若施加到电枢两端的脉动电压占空比为D=t1/T,则电枢的平均电压为: U平=UD 式1.4由式1.3得到:n =Ea/CeUD/ Ce=KD ;在假设电枢内阻转小的情况下式中K= U/ Ce,是常数。图3-11为施加不同占空比时实测的数据绘制所得占空比与转速的关系图。 图3-11 占空比与电机转速的关系由图看出转速与占空比D并不是完全速的线性关系(图中实线),原因是电枢本身有电阻,不过一般直流电机的内阻较小,可以近视为线性关系。由此可见,改变施加在电枢两端电压就能改变电机的转速成,这就是直流电机PWM调速原理。3.3.6 电机驱动模块的电路设计根据直流电机的工作原理,从PROTEUS选取元器件如下,放置元器件、放置电源和地连线,我们参此设计的直流电机驱动模块电路如图3-12所示 2SK1058 : CMOSS管 74L26 : 三太门 1N4006 : 二极管 VSCOURCE : 电源 MOTOR-ENCODER : 直流电机 RES : 电阻 AT89C51 : 单片机 (在此并未显示)图3-12 直流电机驱动电路 然而考虑市场的行情,既然已有专门地为电机驱动而设计的芯片,就没必要再从新来设计;选用L298芯片来构成的电路结构基本上跟上图一样。恒压恒流桥式2A驱动芯片L298NL298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。EnAIN1IN2运行状态0XX停止110正转101反转111刹停100停止L298N可接受标准TTL逻辑电平信号VSS,VSS可接457V电压。4脚VS接电源电压,VS电压范围VIH为2546V。输出电流可达25A,可驱动电感性负载。1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。5,7,10,12脚接输入控制电平,控制电机的正反转。EnA,EnB接控制使能端,控制电机的停转。表3-2是L298N功能逻辑图。表3-2In3,In4的逻辑图与表1相同。由表1可知EnA为低电平时,输入电平对电机控制起作用,当EnA为高电平,输入电平为一高一低,电机正或反转。同为低电平电机停止,同为高电平电机刹停。由L298芯片组装的驱动模块如图3-13所示。所用元器件如下所示: 1N4006 : 二极管 AT89C51 : 单片机 (在此并未显示) RES : 电阻MOTOR-ENCODER : 直流电机 L298 : 电机驱动芯片 RESPACK-8: 排阻 图3-13 直流电机及其驱动电路3.4霍尔元件测速电路霍尔元件测速法是利用霍尔开关元件测转速的。霍尔开关元件内含稳压电路、霍尔电势发生器、放大器、施密特触发器和输出电路。运用霍尔元件作为检测传感器,将霍尔传感器安装在靠近圆盘的固定位置上,并在圆盘上分别安装上8个磁钢,当磁钢转到霍尔附近时, 霍尔元件的输出端输出低电平信号。当转盘转动时,单片机可通过检测脉冲信号测出传感

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论