


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3二次函数的表达式课后练习题东源县蓝口 中学 潘石源1. 抛物线y=a(x1)2+4经过点A(1,0),求该抛物线的解析式。2.已知抛物线y=x2+bx+c经过点A(3,0),B(1,0)求抛物线的解析式3.已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3)求抛物线的解析式。4. 已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3)求抛物线的函数表达式。5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x= ,求抛物线的解析式。6. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tanBAO=3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线y=ax2+bx+c经过点A、B、C求抛物线的解析式。参考答案:1. 抛物线y=a(x1)2+4经过点A(1,0),求该抛物线的解析式。分析:将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;解:(1)将A(1,0)代入y=a(x1)2+4中,得:0=4a+4,解得:a=1,则抛物线解析式为y=(x1)2+4;2.已知抛物线y=x2+bx+c经过点A(3,0),B(1,0)求抛物线的解析式分析:根据抛物线y=x2+bx+c经过点A(3,0),B(1,0),直接得出抛物线的解析式为;y=(x3)(x+1),再整理即可, 解答:解:抛物线y=x2+bx+c经过点A(3,0),B(1,0)抛物线的解析式为;y=(x3)(x+1),即y=x2+2x+3,3.已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3)求抛物线的解析式。分析:由于A(1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可解答:解:抛物线与y轴交于点C(0,3),设抛物线解析式为y=ax2+bx+3(a0),根据题意,得,解得,抛物线的解析式为y=x2+2x+34. 已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3)求抛物线的函数表达式。分析:把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解和设交点式(两点式)解答均可;解:(1)抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),解得,所以抛物线的函数表达式为y=x24x+3;5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x= ,求抛物线的解析式。分析:根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点再由待定系数法求解即可;解答:解:设抛物线的解析式把A(2,0)C(0,3)代入得:解得:即6. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tanBAO=3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线y=ax2+bx+c经过点A、B、C求抛物线的解析式;分析:先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;解答:解:在RtAOB中,OA=1,tanBAO=3,OB=3OA=3DOC是由AOB绕点O逆时针旋转90而得到的,DOCAOB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏电池生产线参观保密协议书
- 慢性肿瘤用药指导
- 综合货物运输基础
- 2024年高考语文备考:非连续性文本+提出对策措施
- 2024年高考语文冲刺小题增分练03含答案
- Zika学前教育体系构建路径
- 为谁工作总结汇报
- 猪胸膜肺炎放线杆菌研究概述
- 足浴行业服务培训
- 知“帕”不怕:科学防治帕金森病健康宣教
- HG∕T 5229-2017 热空气老化箱
- 09SMS202-1埋地矩形雨水管道及附属构筑物(混凝土模块砌体)
- 医生签约MCN机构合同模版
- 重庆市沙坪坝区南开中学校2023-2024学年八年级下学期期末英语试题(无答案)
- 广东省深圳市南山区2023-2024学年七年级下学期期末英语试题
- 2022-2023学年江苏省苏州市高二下学期学业质量阳光指标调研卷英语试卷
- 苏教版小学四年级下册科学期末测试卷及参考答案1套
- 体育场馆物业管理操作规范
- 24春国开电大《旅游学概论》形考任务1-4试题及答案
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 生命伦理学:生命医学科技与伦理智慧树知到期末考试答案章节答案2024年山东大学
评论
0/150
提交评论