




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 证明(二)1. 你能证明它们吗(一)一、教学目标:1知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。2能力目标:经历“探索发现猜想证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平;3情感与价值目标启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;培养学生合作交流的能力,以及独立思考的良好学习习惯.4教学重、难点 重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。二、教学过程学生课前准备:一张等腰三角形纸片(供上课折叠实验用);第一环节:回顾旧知 导出公理活动内容:提请学生回忆并整理证明(一)中列出的六条公理:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);6.全等三角形的对应边相等,对应角相等。在此基础上回忆全等三角形的另一判别条件:(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明。第二环节:折纸活动 探索新知活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式。活动效果与注意事项:由于有了教师引导下学生的活动,以及具体的折纸操作,学生一般都能得到有关等腰三角形的性质定理,当然,可能部分学生得到的定理并不全面,在学生小组的交流中,通过同伴的互相补充,一般都可以得到所有性质定理。当然,在教学过程中,教师应注意小组的巡视,提醒学生思考多种证明思路,思考不同的辅助线之间的关系从而得到“三线合一”。第三环节:明晰结论和证明过程活动内容:1、在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学生明晰证明过程。(1)等腰三角形的两个底角相等;(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合2、提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质,从而得到:等边三角形三个内角都相等并且每个内角都等于60.活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,意图给学生明晰一定的规范,起到一种引领作用;活动2,则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习。活动效果:学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60”的证明过程:已知:如图,ABC中,AB=BC=AC求证:A=B=C=60.证明:在ABC中,AB=AC,B=C(等边对等角) 同理:C=A,A=B=C(等量代换) 又A+B+C180(三角形内角和定理),A=B=C60第四环节:随堂练习 巩固新知活动内容:学生自主完成P4第2题:如图(图略),在ABD中,C是BD上的一点,且ACBD,AC=BC=CD,(1)求证:ABD是等腰三角形;(2)求BAD的度数。活动目的:巩固全等三角形判定公理的应用,复习等腰三角形“等边对等角”的用法。第五环节:课堂小结活动内容:让学生畅谈收获,包括具体结论以及其中的思想方法等。活动目的:形成及时总结语反思的意识与习惯,提高学生能力。活动效果与注意事项:教师注意对学生的感想进行适当的引导,并在学生交流的基础上,明晰部分收获供学生共享,如:1、具体有关性质定理;2、通过折纸活动获得三个定理,均给予了严格的证明,为今后解决有关等腰三角形的问题提供了丰富的理论依据3、体会了证明一个命题的严格的要求,体会了证明的必要性第六环节:布置作业P5习题1,2.三、教学反思第一章 证明(二)1. 你能证明它们吗(二)一、教学目标:1知识目标:探索发现猜想证明等腰三角形中相等的线段,证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;初步了解反证法的含义,并能利用反证法证明简单的命题;2能力目标:经历“探索发现猜想证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;引导学生体会蕴含在问题解决过程中的思想方法,如归纳、类比、反证法等。3情感与价值观要求鼓励学生积极参与数学活动,激发学生的好奇心和求知欲体验数学活动中的探索与创造,感受数学的严谨性4教学重、难点重点:经历“探索发现一一猜想证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论结合实例体会反证法的含义难点:由一般结论归纳出特殊结论探求证明思路,特别是反证法的思路含义二、教学过程第一环节:提出问题,引入新课活动内容:在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?第二环节:自主探究活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。活动效果与注意事项:活动中,教师应注意给予适度的引导,如可以渐次提出问题:你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等并对这些命题给予多样的证明。如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:已知:如图,在ABC中,AB=AC,BD、CE是ABC的角平分线求证:BD=CE在证明过程中,学生思路一般还较为清楚,但毕竟严格证明表述经验尚显不足,因此,教学中教师应注意对证明规范提出一定的要求,因此,注意请学生板书其中部分证明过程,可能部分学生还有一些困难,注意对有困难的学生给予帮助和指导。第三环节:经典例题 变式练习活动内容:提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:在课本图14的等腰三角形ABC中,(1)如果ABD=ABC,ACE=ACB呢?由此,你能得到一个什么结论?(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此你得到什么结论?第四环节:逆向思考,导出反证法活动过程与效果:教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?生如图,在ABC中,B=C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了师你是如何想到的? 生由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把ABC分成两个全等的三角形师很好同学们可在练习本上尝试一下是否如此,然后分组讨论生我们组发现,如果作BC的中线,虽然把ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的后两种方法是可行的师那么就请同学们任选一种方法按要求将推理证明过程书写出来(教师可让两个同学在黑板上演示,并对推理证明过程讲评)(证明略)师我们用“反过来”思考问题,获得并证明了一个非常重要的定理等腰三角形的判定定理:有两个角相等的三角形是等腰三角形这一定理可以简单叙述为:等角对等边我们不仅发现了几何图形的对称美,也发现了数学语言的对称美第五环节:适时提问 导出反证法我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等你认为这个结论成立吗?如果成立,你能证明它吗?有学生提出:“我认为这个结论是成立的因为我画了几个三角形,观察并测量发现,如果两个角不相等,它们所对的边也不相等但要像证明“等角对等边”那样却很难证明,因为它的条件和结论都是否定的”的确如此像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢?我们来看一位同学的想法:如图,在ABC中,已知BC,此时AB与Ac要么相等,要么不相等假设AB=AC,那么根据“等边对等角”定理可得C=B,但已知条件是BC“C=B”与已知条件“BC”相矛盾,因此ABAC你能理解他的推理过程吗?再例如,我们要证明ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设A=90,B=90,可得A+B=180,但ABC中A+B+C=180, “A+B=180”与“A+B+C=180”相矛盾,因此ABC中不可能有两个直角引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立这也是证明命题的一种方法,我们把它叫做反证法第六环节:及时巩固 随堂练习 已知:如图,CAE是ABC的外角,ADBC且1=2求证:AB=AC证明:ADBC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等) 又1=2,B=CAB=AC(等角对等边)第七环节:探讨收获 课时小结本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理“等角对等边”,最后结合实例了解了反证法的含义第八环节:布置作业课本P9 习题12 第2、3题三、教学反思第一章 证明(二)1. 你能证明它们吗(三)一、教学目标:1知识目标:理解等边三角形的判别条件及其证明,理解含有30角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。2能力目标:经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维经历实际操作,探索含有30角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。3情感与价值观要求积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点等边三角形判定定理的发现与证明.含30角的直角三角形的性质定理的发现与证明.4教学难点含30角的直角三角形性质定理的探索与证明.引导学生全面、周到地思考问题.二、教学过程分析学具准备:两个带30度角的三角板。第一环节:提问问题,引入新课活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。第二环节:自主探索活动内容:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质判定的条件等腰三角形(含等边三角形)等边对等角等角对等边“三线合一”即等腰三角形顶角平分线,底边上的中线、高互相重合有一角是60等边三角形三个角都相等,且每个角都是60三个角都相等的三角形是等边三角形第三环节:实际操作 提出问题 活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30角的直角三角形。拿出三角板,做一做:用含30角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半已知:如图,在RtABC中,C=90,BAC=30求证:BC=AB分析:从三角尺的拼摆过程中得到启发,延长BC至D,使CD=BC,连接AD证明:在ABC中,ACB=90,BAC=30B=60.延长BC至D,使CD=BC,连接AD(如图所示)ACB=90ACB=90AC=AC,ABCADC(SAS)AB=AD(全等三角形的对应边相等)ABD是等边三角形(有一个角是60的等腰三角形是等边三角形)BC=BD=AB第四环节:变式训练 巩固新知活动1:直接提请学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30吗?如果是,请你证明它在师生分析的基础上,给出证明:活动2 :呈现例题,在师生分析的基础上,运用所学的新定理解答例题。例题等腰三角形的底角为15,腰长为2a,求腰上的高CD的长.分析:观察图形可以发现在RtADC中,AC=2a而DAC是ABC的一个外角,而DAC=15=30,根据在直角三角形中,30角所对的直角边是斜边的一半,可求出CD解:ABC=ACB=15DAC=ABC+ACB=15+15=30CD=AC=2a= a(在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半)第五环节:畅谈收获 课时小结让学生对课堂学习进行小结,注意总结具体的知识、结论,以及解决问题的方法和蕴含其中的思想,如分类讨论思想、逆向思维等。第六环节:布置作业P12 习题1.3 1,2,3。三、教学反思第一章 证明(二)2直角三角形(一)一、教学目标:1知识目标:(1)经历和了解勾股定理及其逆定理的证明方法,进一步理解证明的必要性.(2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立2能力目标:(1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维(2)进一步掌握推理证明的方法,发展演绎推理的能力3情感与价值观要求在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心.积极参与数学活动,对数学命题的获得产生好奇心和求知欲4教学重点、难点重点了解勾股定理及其逆定理的证明方法结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立难点勾股定理及其逆定理的证明方法对不是“如果那么”形式的逆命题的叙述二、教学过程分析第一环节:创设情境,引入新课通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。问题1一个直角三角形房梁如图所示,其中BCAC, BAC=30,AB=10 cm,CB1AB,B1CAC1,垂足分别是B1、C1,那么BC的长是多少? B1C1呢?解:在RtABC中,CAB=30,AB=10 cm,BCAB105 cmCB1AB,B+BCB190又A+B90BCB1 A30在RtACB1中,BB1BC5 cm25 cmAB1ABBB1102.57.5(cm)在RtC1AB1中,A30B1C1 AB1 7.53.75(cm)解决这个问题,主要利用了上节课已经证明的“30角的直角三角形的性质”由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明。教材中曾利用数方格和割补图形的方法得到了勾股定理如果利用公理及由其推导出的定理,能够证明勾股定理吗?请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法第二环节:讲述新课阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论你能证明此结论吗?这对同学们来说也是具有一定难度的于是师生共同来完成已知:如图:在ABC中,AB2+AC2BC2求证:ABC是直角三角形分析:要从边的关系,推出A90是不容易的,如果能借助于ABC与一个直角三角形全等,而得到A与对应角(构造的三角形的直角)相等,可证证明:作RtABC,使A90,ABAB,AC、AC(如图),则AB2AC2.(勾股定理)AB2AC2BC2,ABAB,ACBC2BC2BCBCABCABC(SSS)AA90(全等三角形的对应角相等)因此,ABC是直角三角形定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形2互逆命题和互逆定理观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?通过观察,学生会发现:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件这样的情况,在前面也曾遇到过例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”又如“在直角三角形中,如果一个锐角等于30,那么它所对的直角边就等于斜边的一半”交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30”。第三环节:议一议:活动内容:观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。活动时可以先让学生观察下面三组命题: 如果两个角是对顶角,那么它们相等如果两个角相等,那么它们是对顶角如果小明患了肺炎,那么他一定发烧如果小明发烧,那么他一定患了肺炎三角形中相等的边所对的角相等三角形中相等的角所对的边相等上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题请同学们判断i每组原命题的真假逆命题呢?在第一组中,原命题是真命题,而逆命题是假命题在第二组中,原命题是真命题,而逆命题是假命题在第三组中,原命题和逆命题都是真命题由此我们可以发现:原命题是真命题,而逆命题不一定是真命题第四环节:想一想要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗?它们都是真命题吗?从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗? 并通过具体的实例说明。如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.其中逆命题成为原命题(即原定理)的逆定理 第五环节:随堂练习说出下列命题的逆命题,并判断每对命题的真假;(1)四边形是多边形;(2)两直线平行,内旁内角互补;(3)如果ab0,那么a0, b0第六环节:课时小结这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力第七环节:课后作业习题14第1、3题三、教学反思第一章 证明(二)2直角三角形(二)一、教学目标:1知识目标:能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性利用“HL定理解决实际问题2能力目标:进一步掌握推理证明的方法,发展演绎推理能力初步学会从数学的角度提出问题,理解问题,体验解决问题的多样性,发展实践能力和创新精神3情感与价值观要求积极参与数学活动,对数学有好奇心形成实事求是的态度以及进行质疑和独立思考的习惯4教学重点及难点HL定理的推导及应用二、教学过程分析第一环节:提问质疑 我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”要求学生完成,一位学生的过程如下:已知:在ABC中, AB=AC 求证:B=C证明:过A作ADBC,垂足为C,ADB=ADC=90又AB=AC,AD=AD,ABDACD B=C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的可以画图说明(如图所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD与ABC不全等)” 也有学生认同上述的证明。教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等”,从而引入新课。第二环节:引入新课1“HL”定理由师生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC求证:RtABCRtABC证明:在RtABC中,AC=AB2一BC2(勾股定理)又在Rt A B C中,A C =AC=AB2一BC2 (勾股定理)AB=AB,BC=BC,AC=ACRtABCRtABC (SSS)教师用多媒体演示:定理 斜边和一条直角边对应相等的两个直角三角形全等 这一定理可以简单地用“斜边、直角边”或“HL”表示 从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的活动过程如下:判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全等; (2)斜边及一锐角对应相等的两个直角三角形全等; (3)两条直角边对应相等的两个直角三角形全等; (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等 对第三环节:做一做问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法第四环节:议一议如图,已知ACB=BDA=90,要使ACBBDA,还需要什么条件?把它们分别写出来 这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)下面我们再来看一例题 例题如图,在ABCABC中,CD,CD分别分别是高,并且ACAC,CD=CDACB=ACB求证:ABCABC分析:要证ABCABC,由已知中找到条件:一组边AC=AC,一组角ACB=ACB如果寻求A=A,就可用ASA证明全等;也可以寻求么B=B,这样就有AAS;还可寻求BC=BC,那么就可根据SAS注意到题目中,通有CD、CD是三角形的高,CD=CD观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的RtADCRtADC,因此证明A=A 就可行第五环节:课时小结本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力同学们这一节课的表现,很值得继续发扬广大第六环节:课后作业习题15第1、2题三、教学反思第一章 证明(二)3线段的垂直平分线(一) 一、教学目标:1知识目标:经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定里和判定定理能够利用尺规作已知线段的垂直平分线2能力目标:经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力体验解决问题策略的多样性,发展实践能力和创新精神学会与人合作,并能与他人交流思维的过程和结果 3情感与价值观要求 能积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心4教学重点、难点重点是写出线段垂直平分线的性质定理的逆命题。难点是两者的应用上的区别及各自的作用。二、教学过程分析第一环节:创设情境,引入新课如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成进一步提问:“你能用公理或学过的定理证明这一结论吗?”教师演示线段垂直平分线的性质:定理 线段垂直平分线上的点到线段两个端点的距离相等同时,教师板演本节的题目:13 线段的垂直平分线(一)第二环节:探究新知第一环节提出问题后,有学生提出了一个问题:“要证线段垂直平分线上的点到线段两个端点的距离相等,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?何况不可能呢”教师鼓励学生思考,想办法来解决此问题。通过讨论和思考,有学生提出:“如果一个图形上每一点都具有某种性质,那么只需在图形上任取一点作代表,就可以了”教师肯定该生的观点,进一步提出:“我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质”已知:如图,直线MNAB,垂足是C,且AC=BC,P是MN上的点求证:PA=PB分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等证明:MNAB,PCA=PCB=90AC=BC,PC=PC,PCAPCB(SAS) ;PA=PB(全等三角形的对应边相等)第三环节:想一想你能写出上面这个定理的逆命题吗?它是真命题吗? 这个命题不是“如果那么”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果那么”的形式,逆命题就容易写出鼓励学生找出原命题的条件和结论。原命题的条件是“有一个点是线段垂直平分线上的点”结论是“这个点到线段两个端点的距离相等”此时,逆命题就很容易写出来“如果有一个点到线段两个端点的距离相等,那么这个点到线段两个端点的距离相等”写出逆命题后时,就想到判断它的真假如果真,则需证明它;如果假,则需用反例说明请同学们自行在练习册上完成学生给出了如下的四种证法。证法一:已知:线段AB,点P是平面内一点且PA=PB求证:P点在AB的垂直平分线上证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC,RtPACRtPBC(HL定理)AC=BC,即P点在AB的垂直平分线上证法二:取AB的中点C,过PC作直线AP=BP,PC=PC.AC=CB,APCBPC(SSS)PCA=PCB(全等三角形的对应角相等)又PCA+PCB=180,PCA=PCB=90,即PCABP点在AB的垂直平分线上证法三:过P点作APB的角平分线AP=BP,1=2,PC=PC,APCBPC(SAS)AC=BC,PCA=PCB(全等三角形的对应角相等,对应边相等)又PCA+PCB=180PCA=PCB=90P点在线段AB的垂直平分线上证法四:过P作线段AB的垂直平分线PCAC=CB,PCA=PCB=90,P在AB的垂直平分线上四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂”师生共析:如图(1),PD上AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB这说明一般情况下:过P作AB的垂直平分线“是不可能实现的,所以第四个同学的证法是错误的从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,(1)(2)我们把它称做线段垂直平分线的判定定理我们曾用折纸的方法折出过线段的垂直平分线现在我们学习了线段垂直平分线的性质定理和判定定理,能否用尺规作图的方法作出已知线段的垂直平分线呢?第四环节:做一做 活动内容:用尺规作线段的垂直平分线活动目的:探索尺规方法作线段垂直平分线的思路与过程以及体验其中的演绎思维过程。活动过程:用尺规作线段的垂直平分线要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线下面我们一同来写出已知、求作、作法,体会作法中每一步的依据师生共析已知:线段AB(如图)求作:线段AB的垂直平分线作法:1分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D2作直线CD直线CD就是线段AB的垂直平分线师根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流 师我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点第五环节:随堂练习课本P26第六环节:课时小结本节课我们先推理证明了线段的垂直平分线的性质定理和判定定理,并学会用尺规作线段的垂直平分线 第七环节:课后作业习题l.6 第1、3题 三、教学反思第一章 证明(二)3线段的垂直平分线(二) 一、教学目标:1知识目标:经历折纸和作图、猜想、证明的过程,能够证明三角形三边垂直平分线交于一点经历猜想、探索,能够作出以a为底,h为高的等腰三角形2能力目标:经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力体验解决问题的方法,发展实践能力和创新意识 学会与他人合作,并能与他人交流思维的过程和结果 3. 情感与价值观要求 能够积极参与数学学习活动,对数学有好奇心和求知欲 在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 4教学重点、难点 重点:能够证明与线段垂直平分线相关的结论 已知底边和底边上的高,能利用尺规作出等腰三角形 难点:证明三线共点是难点。二、教学过程分析第一环节:提出问题,引入新课活动内容:尺规作图作三条边的垂直平分线。活动目的:让学生利用自己的动手体会三类三角形三条边的垂直平分线交于一点的正确性。活动过程:教师提问:“师习题16的第1题:利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么? “三角形三边的垂直平分线交于一点”、“这一点到三角形三个顶点的距离相等”等都是学生可以发现的直观性质。下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流学生会有和习题16有着同样的结论教师质疑:“这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义”这节课我们来学习探索和线段垂直平分线有关的结论板演题目:132线段垂直平分线(二)第二环节:讲述新课我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的不妨我们再来看一下演示过程,或许你能从中受到启示通过演示和启发,引导学生认同:“两直线必交于一点,那么要想证明“三线共点,只要证第三条直线过这个交点或者说这个点在第三条直线上即可” 虽然我们已找到证明“三线共点”的突破口,询问学生如何知道这个交点在第三边的垂直平分线上呢?师生共析,完成证明定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等练习1分别作出直角三角形、锐角三角形、钝角三角形三边的垂直平分线,说明交点分;别在什么位置2已知:ABC中,AB=AC,AD是BC边一上的中线,AB的垂直平分线交AD于O求证:OA=OB=OC 第三环节:议一议 活动内容:借用尺规作图作已知一条边及这条边上的高,求作出相关的三角形。活动过程:(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个? 由学生思考可得:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:ABC,使BC=a,BC边上的高为h 师生共析已知底边及底边上的高,求作等腰三角形已知:线段a、h求作:ABC,使AB=AC,BC=a,高AD=h作法:1作BC=a;2作线段Bc的垂直平分线MN交BC于D点;3以D为圆心,h长为半径作弧交MN于A点;4连接AB、ACABC就是所求作的三角形(如图所示)第四环节:课时小结 本节课通过折纸,推理证明了“到三角形三个顶点距离的点是三角形三条边的垂直平;分线的交点,及三角形三条边的垂直平分线;交于一点”的结论,并能根据此结论“已知等腰三角形的底和底边的高,求作等腰三角形”第五环节:课后作业习题17第1、2题三、教学反思第一章 证明(二)角平分线(一) 一、教学目标:1知识目标:角平分线的性质定理的证明角平分线的判定定理的证明用尺规作已知角的角平分线2能力目标:进一步发展学生的推理证明意识和能力,培养学生将文字语言转化为符号语言、图形语言的能力 体验解决问题策略的多样性,提高实践能力3情感与价值观要求 能积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心4教学重点、难点重点角平分线的性质和判定定理的证明用尺规作已知角的角平分线并说明理由难点正确地表述角平分线性质定理的逆命题正确地将文字语言转化成符号语言和图形语言,对几何命题加以证明二、教学过程分析第一环节:设置情境 温故知新搭建探究平台问题我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:从折纸过程中,我们可以得出CD=CE,即角平分线上的点到角两边的距离相等你能证明它吗?第二环节:展示思维空间.构建活动空间请同学们自己尝试着证明它,然后在全班进行交流已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别为D、E求证:PD=PE证明:1=2,OP=OP,PDO=PEO=90,PDOPEO(AAS)PD=PE(全等三角形的对应边相等)(教师在教学过程中对有困难的学生要给以指导)我们用公理和已学过的定理证明了我们折纸过程中得出的结论我们把它叫做角平分线的性质定理,我们再来一起陈述:(用多媒体演示)角平分线上的点到这个角的两边的距离相等我们经常用逆向思维得到一个原命题的逆命题你能写出这个定理的逆命题吗?我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题如果有一个点到角两边的距离相等,那么这个点必在这个角的平分线上此时有学生提问:“我觉得这个命题是假命题角平分线是角内部的一条射线,而角的外部也存在到角两边距离相等的点”教师肯定这位同学思考问题很仔细并加以解释。事实上,从同一点出发的两条射线一般组成两个角,而“角的内部”通常是指其中小于180的角的内部,其余部分为角的外部如上图所示,到AOB两边距离相等的点的集合应是射线OC、OD、OE、OF,但其中只有射线OC(即在AOB内部的射线)才是AOB的平分线因此逆命题中应加上“在角的内部”的条件再来完整地叙述一下角平分线性质定理的逆命题。在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上它是真命题吗? 你能证明它吗?(由大家自己独立思考完成,在全班讨论交流,对困难学生可个别辅导)第三环节:随堂练习 及时巩固 如图,AD、AE分别是ABC中A的内角平分线和外角平分线,它们有什么关系?解:AD平分CAB又1=2=CAB又AE平分CAFCAB+CAF=180,3=4= CAFCAB+CAF=1801+3= (CAB+CAF)=180=90,即ADAE第四环节:课时小结这节课我们在折纸的基础上,证明了角平分线的性质定理和判定定理,并学习了用尺规作一个已知角的角平分线,进一步发展学生的推理证明意识和能力第五环节:课后作业1习题18第1,2,3题2阅读“读一读”,使学生通过了解数学发展史上与尺规作图有关的“三大几何难题”,开阔他们的视野,体会数学家坚忍不拔的科学探索精神三、教学反思第一章 证明(二)角平分线(二) 一、教学目标:1知识目标:(1)证明与角的平分线的性质定理和判定定理相关的结论(2)角平分线的性质定理和判定定理的灵活运用2能力目标:(1)进一步发展学生的推理证明意识和能力(2)培养学生将文字语言转化为符号语言、图形语言的能力(3)提高综合运用数学知识和方法解决问题的能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数控技术应用试题及答案
- 2025年北京个人房屋租赁合同范本官方版下载
- 2025官方版股权投资合同范本
- 2025年高二【数学(人教A版)】两条平行直线间的距离公式-学习任务单
- 2025抵质押物的借款合同范本
- 公园养护基本知识培训总结
- 公司职工财务知识培训课件
- 高职卫生专业招生面试题库
- 2025关于汽车租赁的合同样本
- 市场调研与创意策划的关系面试题及答案解析
- 学术刊物管理办法
- 造林后续管理办法
- 《房地产估价》课件
- 2025年学习强国挑战知识竞赛试题及答案
- 2025年高考江苏卷物理真题(解析版)
- 项目结算资料管理办法
- 数字化转型下的民办高职院校发展路径
- 人员密集场所管理制度
- 多溶洞体系下岩溶区桩基承载性能研究
- 2025年云南省中考物理试卷真题(含答案解析 )
- 供应商黑名单管理制度
评论
0/150
提交评论