2013中考建模题汇编(31题).doc_第1页
2013中考建模题汇编(31题).doc_第2页
2013中考建模题汇编(31题).doc_第3页
2013中考建模题汇编(31题).doc_第4页
2013中考建模题汇编(31题).doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北襄阳市47中 朱弟华 2013中考建模题题汇编(31题)1、 “五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:类别彩电冰箱洗衣机进价200016001000售价220018001100(1)、若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?(2)、若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润。(利润=售价-进价)2某公司欲租赁甲、乙两种设备,用来生产A产品80件、B产品100件已知甲种设备每天租赁费为400元,每天满负荷可生产A产品12件和B产品10件;乙种设备每天租赁费为300元,每天满负荷可生产A产品7件和B产品10件(1)若在租赁期间甲、乙两种设备每天均满负荷生产,则需租赁甲、乙两种设备各多少天恰好完成生产任务?(2)若甲种设备最多只能租赁5天,乙种设备最多只能租赁7天,该公司为确保完成生产任务,决定租赁这两种设备合计10天(两种设备的租赁天数均为整数),问该公司共有哪几种租赁方案可供选择?所需租赁费最少是多少?解:(1)设需租赁甲、乙两种设备分别为x、y天,则依题意得,解得,答:需租赁甲种设备2天、乙种设备8天;(2)设租赁甲种设备a天、乙种设备(10a)天,总费用为w元,根据题意得,3a5,a为整数,a=3、4、5,方法一:共有三种方案方案(1)甲3天、乙7天,总费用4003+3007=3300;方案(2)甲4天、乙6天,总费用4004+3006=3400;方案(3)甲5天、乙5天,总费用4005+3005=3500;330034003500,方案(1)最省,最省费用为3300元;方法二:则w=400a+300(10a)=100a+3000,1000,w随a的增大而增大,当a=3时,w最小=1003+3000=3300,答:共有3种租赁方案:甲3天、乙7天;甲4天、乙6天;甲5天、乙5天最少租赁费用3300元3兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价进价)4沿海局势日趋紧张,解放军部队准备往沿海运送A,B两种新型装备。已知A型装备比B型装备的2倍少300件,若安排一只一次能运送3000件运力的运输部队来负责,刚刚好一次能全部运完.(1) 求A、B两种装备各多少件?(2) 现某运输部队有甲,乙两种运输车共20辆,每辆车同时装载A、B型装备的数据见下表:车 辆种 类每辆的装载量每辆的运输成本A型B型甲车100523000元乙车80722500元根据上述信息,请你设计出安排甲乙两种运输车将这两种装备全部运往目的地的各种可能的运输方案;指出运输成本最少的那种方案,并计算出该方案的运输成本解:(1)设B型装备为x件,则A型装备为(2x-300)件,依题意得: x+2x-300=3000,解得x=1100,所以,A型1900件,B型1100件 答:A型装备1900件,B型装备1100件。 -3分 (2)设甲种汽车a辆,乙种汽车(20-a)辆,则有 100a+80(20-a) 1900 解得 15a17 52a+72(20-a) 1100 -6分a只取整数,a=15,16,17有三种运输方案:甲种汽车15辆,乙种汽车5辆;甲种汽车16辆,乙种汽车4辆;甲种汽车17辆,乙种汽车3辆; -7分设运输成本W元,W=3000a+2500(20-a)=500a+50000W=500a+50000是一次函数,且W随着a的增大而增大 -8分a=15时,成本W最小,且最小成本为57500元此时为方案甲种汽车15辆,乙种汽车5辆。-9分5某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?3718684解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,y与x之间的函数关系式为y=x+300;(2)y=x+300;当x=120时,y=180设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+1802a=7200,解得:a=15,乙品牌的进货单价是30元答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(m+300)个,由题意,得,解得:180m181,m为整数,m=180,181共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(m+300)=5m+2700k=50,W随m的增大而减小,m=180时,W最大=1800元6.2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失,某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区. 已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食品11吨. (1)若将这批货车一次性运到灾区,有哪几种租车方案? (2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选择(1)中的那种租车方案,才能使所付的费用最少?最少费用是多少?7、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。现有甲、乙两种型号的设备,其中每台的价格、工作量如下表。经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元甲型乙型价格(万元/台)产量(吨/月)240180(1)求a, b的值;(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.8.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售. 设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.9为了迎接“十一”小长假的购物高峰某运动品牌专卖店准备购进甲、乙两种运动鞋其中甲、乙两种运动鞋的进价和售价如下表:价格运动鞋甲乙进价(元/双)mm20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50a70)元出售,乙种运动鞋价格不变那么该专卖店要获得最大利润应如何进货?10.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x 40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?解答(1) 销售单价(元)x销售量y(件)2分100010x销售玩具获得利润w(元)10x2+1300x30000(2)10x2+1300x30000=10000解之得:x1=50 x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润 5分(3)根据题意得 解之得:44x46 w=10x2+1300x30000=10(x65)2+12250 7a=100,对称轴x = 65当44x46时,y随x增大而增大.当x = 46时,W最大值=8640(元) 9分答:商场销售该品牌玩具获得的最大利润为8640元。 10分11为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过(平方米)部分(4560)0.5超过平方米部分0.7根据这个购房方案:若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;设该家庭购买商品房的人均面积为平方米,缴纳房款y万元,请求出关于x的函数关系式;若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且 57y60 时,求的取值范围.解:(1)三口之家应缴购房款为0.3900.530=42(万元)(2)当0x30时,y=0.33x=0.9x 当30xm时,y=0.930+0.53(x-30)=1.5x-18 当xm时,y=1.5m-18+0.73(x-m)=2.1x-18-0.6m y= 0.9x (0x30)1.5x-18 ( 30xm) (45m60) 32.1x180.6m (xm)(3) 当50m60时,y=1.550-18=57(舍) 当45m50时,y=2.1500.6m-18=870.6m 57870.6m60 45m50综合得45m50. 12某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表所示: 价格类型进价(元盏)售价(元盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?13.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35x50时,y与x之间的函数关系式为y=200.2x;当50x70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件物价部门规定这两种产品的销售单价之和为90元(1)当50x70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式(2)若公司第一年的年销售量利润(年销售利润=年销售收入生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50x70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和投资成本)不低于85万元请直接写出第二年乙种产品的销售单价m(元)的范围解:(1)设y与x的函数关系式为y=kx+b(k0),函数图象经过点(50,10),(70,8),解得,所以,y=0.1x+15;(2)乙种产品的销售单价在25元(含)到45元(含)之间,解之得45x65,45x50时,W=(x30)(200.2x)+10(90x20),=0.2x2+16x+100,=0.2(x280x+1600)+320+100,=0.2(x40)2+420,0.20,x40时,W随x的增大而减小,当x=45时,W有最大值,W最大=0.2(4540)2+420=415万元;50x65时,W=(x30)(0.1x+15)+10(90x20),=0.1x2+8x+250,=0.1(x280x+1600)+160+250,=0.1(x40)2+410,0.10,x40时,W随x的增大而减小,当x=50时,W有最大值,W最大=0.1(5040)2+410=400万元综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=0.1x2+8x+250+415700=0.1x2+8x35,令W=85,则0.1x2+8x35=85,解得x1=20,x2=60又由题意知,50x65,根据函数性质分析,50x60,即5090m60,30m4014某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x2)个羽毛球,供社区居民免费借用该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元)请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案15一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时问题解决(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带彩棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?16某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克)(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?17为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费150元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?解:(1)由题意,得602.5=150(元);(2)由题意,得a=(325752.5)(12575),a=2.75,a+0.25=3,设OA的解析式为y1=k1x,则有2.575=75k1,k1=2.5,线段OA的解析式为y1=2.5x(0x75);设线段AB的解析式为y2=k2x+b,由图象,得,解得:,线段AB的解析式为:y2=2.75x18.75(75x125);(385325)3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,射线BC的解析式为y3=3x50(x125)(3)设乙用户2月份用气xm3,则3月份用气(175x)m3,当x125,175x75时,3x50+2.5(175x)=455,解得:x=135,175135=40,符合题意;当75x125,175x75时,2.75x18.75+2.5(175x)=455,解得:x=145,不符合题意,舍去;当75x125,75175x125时,2.75x18.75+2.75(175x)=455,此方程无解乙用户2、3月份的用气量各是135m3,40m318水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种80千克的钱,现在可买88千克。(1)现在实际这种每千克多少元?(2)准备这种,若这种的量y(千克)与单价x(元/千克)满足如图所示的一次函数关系。求y与x之间的函数关系式;请你帮拿个主意,将这种的单价定为多少时,能获得最大利润?最大利润是多少?(利润=收入-进货金额)19某商家独家销售具有地方特色的某种商品,每件进价为40元经过市场调查,一周的销售量y件与销售单价x(x50)元/件的关系如下表:销售单价x(元/件)55607075一周的销售量y(件)450400300250(1)直接写出y与x的函数关系式:y=10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?20.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量(千克)与销售价(元/千克)有如下关系:=设这种产品每天的销售利润为元.(1)求与之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?21.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;az55751535(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价成本)22某商场要经营一种新上市的文具,进价为20元/件试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由解:(1)由题意得,销售量=25010(x25)=10x+500,则w=(x20)(10x+500)=10x2+700x10000;(2)w=10x2+700x10000=10(x35)2+2250100,函数图象开口向下,w有最大值,当x=35时,wmax=2250,故当单价为35元时,该文具每天的利润最大;(3)甲方案利润高理由如下:甲方案中:20x30,故当x=30时,w有最大值,此时w甲=2000;乙方案中:,故x的取值范围为:45x49,函数w=10(x35)2+2250,对称轴为x=35,当x=45时,w有最大值,此时w乙=1250,w甲w乙,甲方案利润更高23.一汽车租赁公司拥有某种型号的汽车100辆公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元用含x(x3000)的代数式填表:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元24某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?25.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆。(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍。假设所进车辆全部售完,为使利润最大,该商城应如何进货?26.某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)30405060销售量y(万个)5432同时,销售过程中的其他开支(不含造价)总计40万元(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?97161解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=x+8;(2)根据题意得出:z=(x20)y40=(x20)(x+8)40=x2+10x200,=(x2100x)200=(x50)22500200=(x50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元(3)当公司要求净得利润为40万元时,即(x50)2+50=40,解得:x1=40,x2=60如上图,通过观察函数y=(x50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40x60而y与x的函数关系式为:y=x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个27甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x100(1)根据题题意,填写下表(单位:元)累计购物实际花费130290x在甲商场127在乙商场126(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?28某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案29.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元(毛利润=(售价进价)销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润解:(1)设商场计划购进甲种手机x部,乙种手机y部,由题意,得,解得:,答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加2a部,由题意,得0.4(20a)+0.25(30+2a)16

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论