葛丽涵平面直角坐标系中的面积问题.doc_第1页
葛丽涵平面直角坐标系中的面积问题.doc_第2页
葛丽涵平面直角坐标系中的面积问题.doc_第3页
葛丽涵平面直角坐标系中的面积问题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题:例析平面直角坐标系中面积的求法吴炳桦我们经常会遇到一些与平面直角坐标系有关的面积问题,三角形或四边形的顶点都可以用坐标表示出来,让我们求图形的面积解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上的三角形例1如图1,平面直角坐标系中,ABC的顶点坐标分别为(3,0),(0,3),(0,1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,ABC的边BC在y轴上,由图形可得BC4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,练习 如图,在ABC中,点A、B、C的坐标分别为(1,0),(6,0),(2,4),求ABC的面积分析:这道题要求的是ABC的面积由于ABC的一边在坐标轴上,所以可以把线段AB看做三角形的底边,把点C到x轴的垂线段看做三角形的高,这样便可顺利地求出面积解:评注:当三角形的一边在坐标轴上时,往往可以把这一边看做底边,把另一顶点到坐标轴的垂线段作为高,然后再求面积当图形平移到坐标轴上其他位置时一样可以用这种方法求解二、有一边与坐标轴平行的三角形例2如图,平面直角坐标系中,已知点 A(-3,-2),B(0,3),C(-3,2) 求ABC的面积图2分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边ABy轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3如下图,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?图3分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD4,CE=6,DB=4,BE=1,DE5.所以=(AD+CE)DE-ADDB-CEBE=(4+6)5446114.练习 已知ABC中,A(-1,-2),B(6,2),C(1,3),求ABC的面积.备选练习 如图,在AOB中,点A、O、B的坐标分别是(1,5),(0,0),(4,2),求AOB的面积分析:对于这类题,可将所求三角形的面积转化为几个图形的面积的和或差,如AOB的面积可以看做一个矩形的面积减去三个小三角形的面积要注意,与x轴(或y轴)平行的线段上的点的纵坐标(或横坐标)相同,线段的长度等于线段的两个端点的横坐标(或纵坐标)的差的绝对值。解:过点A作AEy轴于E,过点B作BCx轴于C分别延长线段EA和线段CB,使它们相交于D点,则EDC=90由A、B两点的坐标可知,OC=4,BC=2,BD=3,AD=3,AE=1,OE=5所以有评注:对于三条边都不在坐标轴上的三角形来说,求面积时一般通过构造特殊图形来解决问题,如在这道题中我们将AOB的面积转化为一个矩形的面积与三个小三角形的面积之差如果将三角形平移到平面直角坐标系内其他位置,解题方法类似四、求一边在坐标轴上的四边形的面积例4 如图,四边形ABCD的四个顶点的 坐标分别是A(4,2),B(4,-2),C(0,-4),D(0,1)求四边形ABCD的面积图4练习 学于练第88页第12题。思考:求四条边都不在坐标轴上的四边形的面积如图,四边形ABCD的四个顶点在平面直角坐标系内A、B、C、D四个点的坐标分别为(4,4),(3,2),(1,1),(2,1)求四边形ABCD的面积分析:四边形ABCD的面积可以看成是一个长方形的面积减去一些小三角形的面积解:过点A作AF与直线CD垂直垂足为F,过点B作BE与直线CD垂直,垂足为E,过点A作AG与直线BE垂直,垂足为G由点的坐标的意义可知,AG7,AF5,DF2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论