数学北师大版九年级下册《弧长及扇形的面积》.doc_第1页
数学北师大版九年级下册《弧长及扇形的面积》.doc_第2页
数学北师大版九年级下册《弧长及扇形的面积》.doc_第3页
数学北师大版九年级下册《弧长及扇形的面积》.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

弧长及扇形的面积的教学设计 一、教学目标1、理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;2、经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。二、教材分析本节课关键是理解1弧长公式和1扇形面积公式。利用“动态”思想理解弧长公式和扇形面积公式推导,让学生体验知识的形成过程。1、重点:弧长公式和扇形面积公式的推导及公式的应用。2、难点:运用公式计算组合图形面积。【教师准备】教学前用百度搜索弧长和扇形面积的相关材料,结合学生实际,确定课堂教学形式和方法。三、教学方法根据九年级学生的年龄特点和心理特征以及现有的知识水平,老师通过动态演示形成弧长和扇形的面积变化,启迪学生思维,在讲解新课时我主要采用启发式教学法,先观察当半径一定时弧长的变化与哪些因素有关,然后由特殊到一般,由具体到抽象,通过探究,当学生顺利得出n圆心角所对弧长公式后,再利用类比方法得出n圆心角所对扇形面积公式。同时再启发学生用联系和发展的观点得出扇形面积的第二公式。本课设置两个例题,重点巩固两个公式,培养和渗透学生几何建摸和几何推理应用意识,提高解决问题的能力和树立严谨的学习态度。四、教学过程一、课前延伸:1、圆的周长;2、圆的面积;3、圆弧。设计意图:教师确立延伸目标,让学生独立思考,为本课学习做好准备。二、课堂导入(2分钟):1.动态演示弧长和扇形变化; 2.把握变化过程中几个特殊的位置,对应的弧长和扇形面积设计意图:直观教学,引出课题,从而确立学习目标三、自主学习,合作探究(15分钟)弧长和扇形面积变化与哪些因素有关?:(1)圆心;(2)半径;(3)圆心角【课件演示,观察,结合特殊条件下的几个弧长的分析和计算,有什么发现?】逐步完成导学案:1、已知半径为2,这个圆的周长是 ,面积是 。当圆心角为180时,弧长是 ,弧为 ;当圆心角为360时,弧长是 ,弧为 ;当圆心角为90时,弧长是 ,弧为圆周的 分之 ;当圆心角为60时,弧长是 ;弧为圆周的 分之 ;当圆心角为30时,弧长是 ;弧为圆周的 分之 ;当圆心角为1时,弧长是 ;弧为圆周的 分之 ;2、你能推导出半径为R,圆心角为n时,弧长是多少吗?【360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即】即3、类似的, 你能推导出半径为R,圆心角为n时,扇形面积是多少吗?【圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为】即 4、继续探索:当扇形半径为R,圆心角为n时,扇形面积S扇形与弧长l之间会有什么关系吗?【在这两个公式中,我们发现弧长和扇形面积都和圆心角n半径R有关系,因此l和S之间也有一定的关系,】即设计意图:由学生查找的资料入手,调动学生课堂参与的积极性,在老师的指引下,在热烈的讨论中互相启发、质疑、争辨、补充,自己得出几个公式。不仅锻炼学生的合作学习能力、表达能力, 同时对知识有了深刻、全面、正确的理解,培养了他们抽象思维能力、科学严谨的学习态度和数学学习的方式方法。四、精讲点拨(15分钟)例1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm)分析:要求管道的展直长度,即求的长,根根弧长公式l可求得的长,其中n为圆心角,R为半径解:R40mm,n110的长R4076.8mm因此,管道的展直长度约为76.8mm例2、如图,水平放置的一个圆柱形排水管道的横截面半径为0.6m,其中水高0.3cm,求截面上有水部分的面积(结果精确到0.01cm2)分析:要求图中阴影(弓形)面积,没有直接的公式,需要转化为图形组合的和差问题,即扇形面积与三角形面积的差。容易想到做辅助线利用垂径定理,先根据公式分别求出扇形和三角形面积,问题得到解决。解:连接OA,OB,作弦AB的垂线OC,垂足为D,连接AC,则AD=BD.CDOC=0.6,CD=0.3,OD=OCCD=0.3,OD= CDADDC,AD是线段OC的垂直平分线,AC=AO=OC.AOD=60,从而AOB=120S扇形OAB=在RtAOD中OA=0.6,OD=0.3AD=0.3,AB=0.6,SOAB=S= S扇形OAB- SOAB0.22(m2)所以截面上有水部分的面积约为0.22m2。设计意图:通过两道例题教学,巩固两个公式,并学习规范的书写步骤。对课本例题书写过程加以改进,使学生精准掌握例题。五、课堂提升(10分钟)1、若扇形的圆心角为120,弧长为,则扇形半径为_,扇形面积为_。 2、如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为_。3、已知扇形的周长为28cm,面积为49cm2,则它的半径为_cm。4、在AOB中,O=90,OA=OB=4cm,以O为圆心,OA为半径画,以AB为直径作半圆,求阴影部分的面积。 设计意图:利用百度网络收索资料。学生分组继续巩固基础知识,广泛练习典型题目。六、课堂小结(3分钟)本节课你有哪些收获和体会?知识与能力方面:情感体会方面及其它:设计意图:学生总结本节课,教师补充,完成教学目标,突出知识重点和情感体验。七、布置作业:第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论