协方差和相关系数ppt课件.ppt_第1页
协方差和相关系数ppt课件.ppt_第2页
协方差和相关系数ppt课件.ppt_第3页
协方差和相关系数ppt课件.ppt_第4页
协方差和相关系数ppt课件.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5 3协方差和相关系数 问题对于二维随机变量 X Y 已知联合分布 边缘分布 这说明对于二维随机变量 除了每个随机变量各自的概率特性以外 相互之间可能还有某种联系 问题是用一个什么样的数去反映这种联系 数 反映了随机变量X Y之间的某种关系 可以证明协方差矩阵为半正定矩阵 若D X 0 D Y 0 称 为X Y的相关系数 记为 事实上 利用函数的期望或方差计算协方差 若 X Y 为离散型 若 X Y 为连续型 求cov X Y XY 解 例2设 X Y N 1 12 2 22 求 XY 解 若 X Y N 1 12 2 22 则X Y相互独立 X Y不相关 例3设 0 2 X cos Y cos 是给定的常数 求 XY 解 若 若 有线性关系 若 不相关 但 不独立 没有线性关系 但有函数关系 例4设X Y相互独立 且都服从N 0 2 U aX bY V aX bY a b为常数 且都不为零 求 UV 解 由 而 故 继续讨论 a b取何值时 U V不相关 此时 U V是否独立 但U N 0 2a2 2 V N 0 2a2 2 若a b UV 0 则U V不相关 且U V相互独立 协方差的性质 当D X 0 D Y 0时 当且仅当 时 等式成立 Cauchy Schwarz不等式 证5令 对任何实数t 即 等号成立 有两个相等的实零点 即 又显然 即 即Y与X有线性关系的概率等于1 这种线性关系为 完全类似地可以证明 当E X2 0 E Y2 0时 当且仅当 时 等式成立 相关系数的性质 Cauchy Schwarz不等式的等号成立 即Y与X有线性关系的概率等于1 这种线性关系为 若X Y是两个随机变量 用X的线性函数去逼近Y所产生的平均平方误差为 当取 平均平方误差最小 X Y不相关 X Y相互独立 X Y不相关 若X Y服从二维正态分布 X Y相互独立 X Y不相关 在例3中设 0 2 X cos Y cos 是给定的常数 求得 若 若 有线性关系 若 不相关 没有线性关系 但有其他关系 例5设 X Y N 1 4 1 4 0 5 Z X Y 求 XZ 解 例6设随机变量X的概率密度函数为 1 E X D X 2 求cov X X 问X与 X 是否不相关 3 问X与 X 是否独立 为什么 解 1 2 X与 X 不相关 3 显然 因而X与 X 不独立 例7设A B为随机试验E的两个事件 0 P A 1 0 P B 1 令 证明 若 XY 0 则随机变量X Y相互独立 证设 X Y 的联合分布为 由 即 即 由于事件A B相互独立 必有 也相互独立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论