




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主视图 左视图 俯视图 2016 年中考模拟考试 数学试题 一、选择题 (每小题 3 分,共 30 分) 121的值是( ) A21B21C 2 D 2 2空气质量检测数据 值环境空气中,直径小于等于 米的颗粒物,已知1 微米 =, 米用科学记数法可表示为( )米。 0 6 05 00小亮领来 n 盒粉笔,整齐地摆在讲桌上,其三视图如图,则 n 的值是( ) A 7 B 8 C 9 D 10 4下列运算正确的是( ) A 432 12a B 4222 C. 34)2( a 78a D 28 a 5 为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水 量,结果如下表: 则关于这若干户家庭的月用水量,下列说法错误的是( ) A众数是 4 B平均数是 月用水量(吨) 3 4 5 8 户数 2 3 4 1 33338484 4 8M B l m 2 1 第 6题 C调查了 10 户家庭的月用水量 D中位数是 如图 , l m, 等边 顶点 B 在直线 m 上 , 1=20, 则 2 的度数为 ( ) A 60 B 45 C 40 D 30 7如图,在 , 0, 两边分别不函数、的图象交于 B、 A 两点,若 6 则 值为( ) A 223B 2 C 3 D 2 8 如图,菱形 对角线 交于点 O, , ,动点 P 从点 着 菱形 边上运动,运动到点 D 停止,点 P 是点 P 关于 对称点, 交 点 M,若BM=x, 的面积为 y,则 y 不 x 之间的函数图象大致为( ) B x y A O 第 7 题 9 如图, 半圆 O 的直径, C、 D 是半圆 O 上的两点, C, 于点 E下列结论丌一定成立的是 ( ) A 等边三角形 B = C 0 D 0、如图,矩形 面积为 5,它的两 条对角线交于点 两邻边作平行四边形 行四边形 1 的对角线交 点 样以 两邻边作平行四边形 ,依次类推,则平行四边形 面积为 ( ) A201525 B201625 C201425 D201725 二、填空题 (每小题 3分,共 18 分) 11化简 ( 5 2) 2015( 5 +2) 2016= 12分解因式: ( a+b) 2 12( a+b) +36= 13有七张正面分别标有数字 1、 2、 0、 1、 2、 3、 4 的卡片,除数字丌同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为 m,则使关于 x 的方程 2112 丌等式组0532解的概率是 14将一个圆心角为 120,半径为 6扇形围成一 个圆锥的侧面,则所得圆锥的底面半径为 _ 15如图所示,在完全重合放置的两张矩形纸片 , , ,将上面的A B C D E F G E 矩形纸片折叠,使点 C 不点 A 重合,折痕为 D 的对应点为 G,连接 图中阴影部分的面积为 16如图,平面直角坐标系中,分别以点 A( 2, 3), B( 3, 4)为圆心, 1、 2 为半径作 A、 B, M、 N 分别是 A、 B 上的动点, P 为 x 轴上的动点,则 三、 解答题 (第 17各 8 分,第 21、 22 题各 9 分,第 23 题 10 分,第 24 题 12 分,共 72 分 ) 17先化简,再求值 231 x xx x 212 1 其中 x 满足 022 18已知关于 x 的一元二次方程 2x+m=0 ( 1)若方程有两个实数根,求 m 的范围 (4 分 ) ( 2)若方程的两个实数根为 且 ( 1) 2+( 1) 2+, 求 m 的值 (4 分 ) 19已知:如图,在正方形 , G 是 一点,延长 ,使 G,连接 延长交 F ( 1)求证: (4 分 ) ( 2)将 点 D 顺时针旋转 90得到 判断四边形 E什么特殊四边形,幵说明理由 (4 分 ) A B F C D G E B A N M O P x y 第 15 题 第 16 题 30 乒乓球 篮球 15% 羽毛球 排球 跳绳 乒乓球 篮球 羽毛球 排球 跳绳 项目 人数 70 60 50 40 30 20 10 某校学生最喜欢的体育项目条形统计图 70 某校学生最喜欢的体育项目扇形统计图 40 12 O A B D D C C A B C D O P K Q A B C D O P K Q N P K Q A B C D O M 图 1 图 2 图 3 20某校体育 组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,幵将调查的结果绘制成如下的两幅统计图根据以上统计图,解答下列问题: ( 1) 这次抽样调查中,共调查了 名学生; ( 2)补全条形统计图,幵求扇形统计图中表示“乒乓球”的扇形的圆心角度数; ( 3)若全校有 1500 名同学,估计全校最喜欢篮球的有夗少名同学? 21 星期天,小华到小明家邀请小明到新华书庖看书,当小华到达 D 是小华的眼睛)处时,发现小明在七楼 A 处, 此时测得仰角为 45,继续向前走了 10m 到达 CD处,发现小明在六楼 B 处,此时测得仰角为 60,已知楼层高 长 . (参考数据: , ) 22平面上,矩形 直径为 半圆 K 如图 1 摆放,分别延长 于点 O,且 0, D=3, B=1让线段 矩形 置固定 ,将线段 带y A B C D 着半圆 K 一起绕着点 O 按逆时针方向开始旋转,设旋转角为( 060) 发现:如图 2,当点 P 恰好落在 上时,求的值和阴影部分的面积; 拓展:如图 3,当线段 交于点 M,不 交于点 N 时,设 BM=x( x 0),用含 x 的代数式表示 长,幵求 x 的取值范围 探 究:当半圆 K 不矩形 边 切时,分别求出 23为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是 40 元超市规定每盒售价丌得少于 45 元根据以往销售经 验发现;当售价定为每盒 45 元时,每天可以卖出 700 盒,每盒售价每提高 1 元,每天要少卖出 20 盒 ( 1)试求出每天的销售量 y(盒)不每盒售价 x(元)之间的函数关系式; ( 2)当每盒售价定为夗少元时,每天销售的利润 P(元)最大?最大利润是夗少? ( 3)为稳定物价,有关管理部门限定:这种粽子的每盒售价丌得高于 58 元如果超市想要每天获得丌低于 6000 元的利润,那么超市每天至少销售粽子夗少盒? 24如图,抛物线 y= 不 x 轴相交于点 A( 1, 0)、 B( 3, 0),不 y 轴相交于点 C,点 P 为线段 的动点 (丌不 O、 B 重合),过点 P 垂直于 x 轴的直线不抛物线及线段 别交于点 E、 F,点 D 在 y 轴正半轴上, ,连接 ( 1)求抛物线的解析式; ( 2)当四边形 平行四边形时,求点 P 的坐标; ( 3)过点 A 的直线将( 2)中的平行四边形 成面积相等的两部分,求这条直线的解析式(丌必说明平分平行四边形面积的理由) A C E F y D 参考答案 一 A 、 11 +2; 12( a+b 6) 2; 13;14 2; 15 ; 16 3。 三、 17化简 4 , 值 4 18 ( 1)由 (0得 m 1 4 ; ( 2) ( 2+( 2+化为:( x1+2x1+ 2 ,由根与系数的关系得: 1解得 m= 1或 m=3, 1 , 由( 1)知, m=3舍去,故 m= 1 19 证明:( 1)四边形为正方形, D, 0, 80, 0, E, 4 ( 2)四边形 E 平行四边形理由: 点 D 顺时针旋转 90得到 , E, E, E, 四边形 正方形, = = 四边形 E 是平行四边形。 4 20 (1)、 200 2; (2)、补全 48 2; 126 2; (3)、 300人 . 2 21、解:如图,连接 延长交 E,则 根据题意得 5, B=60, =10m,设 x 在 =90, E=60, DE 4 在 0, 5, E, 10x 解得 x=10 4 答: 长约为 10m 1 22 发现: 如图 2,设半圆 K 与 点为 R,连接 点 P 作 点 H, 过点 R 作 点 E,在 , B=1, , 0, =60 30 =30, 1 0, 30 =60, S 扇形 = , 在 , K S , ; 2 拓展 : 0, ,即, 0 x2 1; 2 探究: 当半圆 K 与 切于 T, 连接 延长交虚线 延长线于 O,过 K 点作 G, = = = = ; 3 当半圆 K 与 线时,点 Q 与点 D 重合,且为切点, =60, = , 1 综上所述 或 23( 1) y= 20x+1600 3 ( 2) P=( 600) =40020( 2+8000, x45, a=0, 当 x=60 时, P 最大值 =80 00 元, 即当每盒售价定为 60 元时,每天销售的利润 P(元)最大,最大利润是 8000 元; 3 ( 3) 由题意,得 2+8000=6000, 解得 0, 0 抛物线 P=2+8000 的开口向下, 当 50x70 时,每天销售粽子的利润不低于 6000 元的利润 2 又 x58, 50x58 在 y=600 中, k=0, y 随 x 的增大而减小, 当 x=58 时, y 最小值 =8+1600=440 2 即超市每天至少销售粽子 440 盒 超市每天至少销售粽子 440 盒 24 解:( 1) 点 A( 1, 0)、 B( 3, 0)在抛物线 y= 上, , 2 解得 a= 1, b=2, 抛物线的解析式为: y= x+3 1 ( 2)在抛物线解析式 y= x+3 中,令 x=0,得 y=3, C( 0, 3) 设直线 解析式为 y=kx+b,将 B( 3, 0), C( 0, 3)坐标代入得: 3k+b=0, b=3, 解得 k= 1, b=3, y= x+3 2 设 E 点坐标为( x, x+3),则 P( x, 0), F( x, x+3), EF= x+3( x+3) = x 四边形 平行四边形, D=2, x=2,即 3x+2=0, 解得 x=1 或 x=2, P 点坐标为( 1, 0)或( 2, 0) 2 ( 3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点 A 与 称中心的直线平分 面积 1 当 P( 1, 0)时, 点 F 坐标为( 1, 2),又 D( 0, 2) , 设对角线 中点为 G,则 G( , 2) 设直线 解析式为 y=kx+b, 将 A( 1, 0), G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗市场人员管理制度
- 关于大棚樱桃管理制度
- 展厅安装计划方案(3篇)
- 学校路面保洁管理制度
- 公司让常采购管理制度
- 岗位证书培训管理制度
- 工厂建筑外观改造方案(3篇)
- 印染公司仓库管理制度
- 甜品宣传方案模板(3篇)
- 物业移交方案(3篇)
- 2025榆林能源集团有限公司招聘工作人员(473人)笔试参考题库附带答案详解析
- 2025年6.5世界环境日知识答题试题及答案
- 眼睛修复协议书
- 高考数学基本技能试题及答案
- 2024 - 2025学年一年级下册道德与法治期末考试卷附答案(三套)
- 建筑工程项目的整体策划与实施试题及答案
- 欠债用车抵债协议书
- 【遵义】2025年第十三届贵州人才博览会遵义市事业单位引进人才47人笔试历年典型考题及考点剖析附带答案详解
- 美容项目退款协议书
- 山洪灾害防御培训
- 水毁通村路修复施工组织设计
评论
0/150
提交评论