




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
碳量子点及其复合物研究进展 1 碳量子点研究简史碳量子点简介碳量子点的基本性质碳量子点制备方法碳量子点的化学修饰基于碳量子点的复合物总结 主要内容 2 1985年报道了零维的碳纳米材料富勒烯1991年发现了一维的碳纳米管2004年制备出了具有二维结构的石墨烯 于此同时 在2004年 Xu等在纯化电弧放电制备单壁碳纳米管过程中 首次观测到了发光的碳纳米粒子 亦称碳量子点 碳量子点研究简史 3 2006年 克莱蒙森大学的孙亚平等第一次用激光刻蚀方法合成出碳量子点2007年 从蜡烛燃烧的烟灰中分离出尺寸小于2nm的具有不同发光的碳量子点 同年 以多壁碳纳米管为原料通过电化学氧化制备出发蓝光的碳量子点在此以后 人们发展了电化学氧化石墨 石墨烯 碳纤维和碳黑制备碳量子点的新技术以及一系列新型的制备方法 4 碳量子点 CQDs 是以粒径小于10nm的碳质骨架和表面基团构成的荧光纳米材料 碳量子点具有毒性小 生物相容性好 发光波长可调 易于功能化等突出优势而备受关注 CQD具有的优势 1 快速的光生电子传递2 电子储存性能3 良好的上转换光致发光能力 目前为止 在生物成像 荧光传感 有机光伏 发光二极管和催化领域表现出了潜在的应用价值 碳量子点 CQDs BiosensorsandBioelectronics81 2016 143 150 5 上转换发光 即 反 斯托克斯发光 Anti Stokes 由斯托克斯定律而来 斯托克斯定律认为材料只能受到高能量的光激发 发出低能量的光 换句话说 就是波长短的频率高的激发出波长长的频率低的光 比如紫外线激发发出可见光 或者蓝光激发出黄色光 或者可见光激发出红外线 但是后来人们发现 其实有些材料可以实现与上述定律正好相反的发光效果 于是我们称其为反斯托克斯发光 又称上转换发光 6 1 结晶性质2 光学性质虽然到目前为止 碳量子点的发光机理仍然不明确 存在诸多争议 但其发光性质具有一些基本特征 如 发光具有尺寸和激发波长的依赖性 发光稳定 无光漂白现象 此外 还发现碳量子点的发光具有pH依赖性 存在上转换发光和电化学发光现象3 细胞毒性和生物兼容性 碳量子点的基本性质 7 但是 针对CQDs自身较弱的电子传输性能这一制约其发展的关键性因素 研究人员立足于碳前驱体源头创新 围绕CQDs的可控构筑 电子传输及光催化有机物制备机理等开展了系统深入的研究 CQDs良好的上转换光致发光能力为全谱太阳光的应用提供了新的思路及方向 碳量子点结构示意图 8 制备碳量子点的方法通常分为两大类 自上而下法和自下而上法 碳量子点制备方法 自上而下法主要是通过物理或化学方法将大尺寸的碳前驱体 如石墨 石墨烯 碳纳米管 碳纤维以及碳黑等 切割成小尺寸的碳量子点 主要包括电弧放电 激光刻蚀 电化学氧化 化学氧化和水热法等 9 自下而上法是以小分子作为前驱体 通过一系列化学反应得到尺寸更大的碳量子点 主要包括热解法 微波法 燃烧法以及溶液化学法等 10 化学修饰碳量子点实现表面钝化化学修饰碳量子点实现发光调控化学修饰碳量子点实现功能化应用 碳量子点的化学修饰 不同温度下制备的氨基化碳量子点水溶液 11 氨基化碳量子点 CQDs和N CQDs的透射电镜照片 a 和 b 和尺寸分布图 c 和 d CQDs和N CQDs的光致发光谱和在自然光以及紫外灯下的照片 左边是CQDs溶液 右边是N CQDs点溶液 碳量子点氨基化示意图 通过改变反应温度 氮源和氮源加入顺序研究了氨基化过程中影响碳量子点发光的因素 确定出了获得高发光强度的氨基化碳量子点的最佳反应条件 AdvMater 2012 24 4569 4573 PhysChemChemPhys 2012 14 7360 7366 12 碳量子点表面嫁接不同基团会影响其光致发光和光催化行为 实验结果表明基团改性后N CQDs荧光强度最强 几乎是O CQDs和Cl CQDs强度的15 40倍 但催化效率最低 Cl CQDs的催化效率最高 在2min之内就可以完全降解亚甲基蓝 随反应温度和氯化亚砜加入量的不同光催化效率也不同通过化学方法在碳量子点表面引入不同基团可以调控其光致发光和光催化性能 这对今后碳量子点复合材料的制备以及光的能量转化奠定了基础 但各个基团在碳量子点表面存在的形式对其性能的影响还需要进一步的研究 Chem Soc Rev 2015 44 362 381 13 碳量子点电子转移的机制当一个具有能量的光子射入碳量子点时 其会产生光生电子 空穴对 光激发产生的电子空穴对有两个主要变化结果 1 激发态的电子经过热振动移动到激发态的最底端 然后回到基态与空穴相结合 一部分发生辐射复合放出光子 复合 2 形成的空穴和电子被分离且分别迁移到碳量子点表面 它们可以将吸附在碳量子点表面的羟基和水分子氧化成 OH 这些小分子具有很强的氧化能力 可以降解有机物 分离 从上述光生电子 空穴的 去向 可以看出 如果想要增强碳量子点发光强度 就需要增强电子空穴对的复合几率 而要提高其光催化效率 需要促使光生电子和空穴对的有效分离 基团改性碳量子点对碳量子点性能影响的机理 14 带隙弯曲方向与弯曲程度的理论推导碳量子点表面有很多缺陷形成可见光带隙 这些能带将会不断的从内部向表面移动 形成带隙弯曲 带隙弯曲诱发电势会影响电子和空穴的分离效率 因此可以通过表面带隙弯曲寻求表面基团与性能之间的关系 导致表面带隙弯曲的原因主要来自表面原子分布和类型 对于向下的弯曲 表面存在正电势 电子加剧移动到表面 引起自由电子的增加 空穴的减少 对于向上的弯曲 表面存在负电势 正电荷加速移动到表面 引起自由电子的减少 空穴的增加 碳量子点从内部到表面的带隙弯曲程度可以通过光致发光来衡量 表面基团影响碳量子点带隙弯曲情况示意图 电子受体修饰 产生负电场 能带向上弯曲 反之 向下 ACSAppl Mater Interfaces2015 7 8363 8376 15 一般认为尺寸 结构和表面态均会影响碳量子点的性能 但是越来越多的研究表明 在一定尺寸和特定的合成条件下 表面基团是影响碳量子点性能的关键因素 目前关于表面基团对碳量子点性能的影响还没有系统的认识和研究 所以通过制备表面含有不同基团的碳量子点 较为系统的研究其对碳量子点性能的影响对碳量子点的广泛应用具有极高的科研价值 16 碳量子点 金属复合物碳量子点的金属复合物主要包括碳量子点与金 银或铂的复合物 孙亚平等在光照下用碳量子点还原氯金酸或氯铂酸直接制备了表面金或铂涂敷的碳量子点 可有效地光催化转化二氧化碳或产氢 在碳量子点的银复合物中 主要探究了银对碳量子点荧光强度的影响 基于碳量子点的复合物 17 碳量子点 金属氧化物复合物碳量子点与氧化物复合物主要有碳量子点与二氧化钛 二氧化硅 三氧化二铁 氧化锌或氧化亚铜等的复合物 苏州大学的康振辉等在这一方面发表了系列研究论文 主要研究了与半导体复合物的光催化性能 含碳量子点的块体材料碳量子点除了直接与金属或金属氧化物复合外 还被用作荧光填料复合到二氧化硅 琼脂或二硫烯镍等块体材料中 赋予了复合材料发光性能 将碳量子点添加到Nafion 全氟磺酸 中制备的复合材料可用作电化学发光免疫检测甲胎蛋白 18 Au CQDs Au CQDs的TEM及HRTEM Au CQDs复合物可以将63 8 的环己烷转换为环己酮 并且在H2O2存在下对两者的分离高达99 9 H2O2与环己烷的摩尔比不同时 其转化和分离效率也不同 Au CQDs对环己烷有高的转化和分离效率是由于 1 Au粒子的SPR效应增强了可见光吸收2 H2O2的存在促进了HO 的产生及数量3 CQDs和AuNPs在可见光下的相互作用 ACSCatal 2014 4 328 336 19 ZnO CQDs 可见及近红外光下激发CQDs的上转换光谱 图中可以看到当可见及近红外光激发CQDs时可以得到紫外及可见光 例如当低于600nm的可见光激发时可以得到紫外光使ZnO催化效率提高 ZnO CQDs的TEM及HRTEM 上转换作用 JournalofEnvironmentalChemicalEngineering4 2016 1148 1155 20 CQDs Ag3PO4 1 CQDs可以作为电子供体和受体 光催化降解过程中电子很容易的传递到Ag3PO4表面 同时多余的电子可以传递到CQDs 避免光腐蚀 提高了催化剂的稳定性 2 CQDs可以吸收可见光利用上转换作用转换为短波长 300to530nm 光 进而激发Ag3PO4产生光生电荷发生光催化作用 如此CQDs Ag3PO4可以利用太阳光全谱提高催化效率 3 CQDs可以捕获Ag3PO4产生的电子 促进光生电子 空穴的分离 同时CQDs表面的电子可以与O2复合生成 O2 发生催化作用 CQDs Ag3PO4的SEM及HRTEM 荧光光致发光光谱 J Mater Chem 2012 22 10501 21 CQDs CuSx的SEM及HRTEM CQDs BiOCl的SEM及TEM g C3N4 CQDs的TEM及HRTEM Nanoscale 2015 7 11321 11327AppliedCatalysisB Environmental181 2016 260 269AppliedSurfaceScience doi org 10 1016 j apsusc 22 光电转换特性 主要指CQDs作为电子载体转移电子和作为光子受体吸收并转化光子的能力 光子的吸收将会产生电子 空穴对 很容易引起氧化还原反应 直接表现为电流响应灵敏度的高低 CQDs的电化学性质依赖于其尺寸大小 温度 所用电解质 结合到电极上的方式及其排列 光学特性 光生电子 空穴复合发射荧光光催化特性 光生电子 空穴分离产生催化作用 23 光电化学 photoelectrochemical 简称PEC 传感器是一类基于具有光电化学活性物质的光电转换特性来测定待测物浓度的检测装置 它是通过光电化学过程来实现工作的 与单纯的光学检测和电学检测方法相比 光电化学检测方法具有灵敏度高 设备简单 易于微型化等诸多优点 是一种极具应用潜力的分析方法 在化学 生物 医药 环境监测和食品等领域显示出广阔的应用前景 已经成为近几十年来的热门研究课题之一 24 现以基于半导体纳米材料及其复合材料的传感器为例来说明光电化学传感器的工作原理 当受到能量大于或等于禁带宽度的光照射时 半导体吸收相应能量的光子 产生电子 空穴对 e h 所产生的这个光生电子和空穴 一种可能是再复合 图1A中的Kr过程 另一种可能是导带上的电子转移到外电路 图1A中的Ke过程 或者溶液中的电子受体上 图1A中的Kc过程 从而产生光电流 如1A 如果导带上的电子转移到电极上 而同时溶液中的电子供体又转移电子到价带的空穴上 则产生阳极光电流 如图1B a 相反 如果导带上的电子转移到溶液中的电子受体上 同时电极上的电子转移到价带的空穴上 则产生阴极光电流 如图1B b 然后使光生电子或空穴参与有效信号产生的过程 Angew Chem Int Ed 2015 54 6540 6544J Phys Chem C2015 119 2956 2962NanoscaleResearchLetters 2016 11 60AppliedCatalysisB Environmental189 2016 26 38 25 碳量子点具有独特的光电效应 可以将光能转化成电能或化学能 且量子点制备方法简单 成本低廉 使得量子点在光电化学领域得到广泛的应用 但是由于其自身复合率高 光电活性不稳定 光生e h 的寿命并不长 光电转化效
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育行业数字化教材在在线教育中的市场分析报告
- 2025年工业互联网平台量子通信技术在智能电网调度中的应用研究报告
- 跨文化交流能力在2025年国际化教育中的跨文化教育发展
- 短视频行业内容监管与平台内容生态建设报告
- 2025年重庆市中考历史真题(原卷版)
- 卫生院内部采购管理制度
- 景区售票部门管理制度
- 县硬笔书法协会管理制度
- 公司账目及资金管理制度
- 景区营销培训管理制度
- 中国成人呼吸系统疾病家庭氧疗指南(2024年)解读课件
- 2026届新高考地理精准复习-从“情境”到“实践”+破解人文地理认知困境的具身化教学感悟
- 2024 - 2025学年人教版三年级下册美术期末考试试卷及答案
- 上海嘉定区2025年公开招聘农村(村务)工作者笔试题带答案分析
- 公司末梢装维人员星级评定方案宽带装维星级评定
- 2025长城汽车人才测评答案
- 幼小衔接写字教学安排
- 2025四川省安全员B证考试题库
- 消防工程专项竣工验收监理质量评估报告
- 驾驶员安全月试题及答案
- 科技创新与中国特色社会主义理论的结合心得体会
评论
0/150
提交评论