二次函数性质_第1页
二次函数性质_第2页
二次函数性质_第3页
二次函数性质_第4页
二次函数性质_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数性质 一般地 自变量自变量 x 和因变量和因变量 y 之之间存在如下关系 一般式 y ax 2 bx c a 0 a b c 为常数 则称 y 为 x 的二次函数 顶点式 y a x h 2 k a 0 a h k 为常数 交点式 与 x 轴 y a x x1 x x2 a 0 a 且 x1 x2 为常数 x1 x2 为二次函数与 x 轴的两交点 等高式 y a x x1 x x2 m a 0 且过 x1 m x2 m 为常数 x1 x2 为二次函数与 x 轴的两交点 二次函数性质 顶点式 y a x h 2 k a 0 a h k 为常数 变量 x 是自变量 y 是 x 的二次函数 交点式 y a x x1 x x2 a 0 x1 x2 为常数 定义 一般地 自变量 x 和因变量 y 之间存在如下关系 一般式 y ax 2 bx c a 0 a b c 为常数 则称 y 为 x 的二次函数 顶点式 y a x h 2 k a 0 a h k 为常数 交点式 与 x 轴 y a x x1 x x2 a 0 x1 x2 为常数 重要知识 a b c 为常数 a 0 且 a 决定函数的开口方向 a 0 时 开口方向向上 a0 时 当 b 2 4ac 0 时 x1 x2 b 2a 折叠表达式 折叠 一般式 y ax bx c a b c 为常数 a 0 折叠 顶点式 抛物线的顶点 P h k y a x h k a h k 为常数 a 0 折叠 交点式 仅限于与 x 轴有交点 A x1 0 和 B x2 0 的抛物线 y a x x1 x x2 a x1 x2 为常数 a 0 转化 3 种形式的转化 一般式和顶点式 对于二次函数 y ax bx c 其顶点坐标为 b 2a 4ac b 4a 即 h b 2a x1 x2 2 k 4ac b 4a 一般式和交点式 x1 x2 b b 4ac 2a 即一元二次方程求根公式 折叠二次函数的性质 特别地 二次函数 以下称函数 y ax 2 bx c a 0 当 y 0 时 二次函数为关于 x 的一元二次方程 以下称方程 即 ax 2 bx c 0 a 0 此时 函数图像与 x 轴有无交点即方程有无实数根 函数与 x 轴交点的横坐标即为方程的根 1 二次函数 y ax 2 y ax 2 k y a x h 2 y a x h 2 k y ax 2 bx c 各式中 a 0 的图象形状相同 只是位置不同 它们的顶点坐标及对称轴如下表 解析式 y ax 2 ky ax 2y a x h 2y a x h 2 ky ax bx c 顶点坐标 0 k 0 0 h 0 h k b 2a 4ac b 4a 对 称轴x 0 y 轴 x 0 y 轴 x hx hx b 2a 当 h 0 时 y a x h 2 的图象可由抛物线 y ax 2 向右平行移动 h 个单位得到 当 h0 k 0 时 将抛物线 y ax 2 向右平行移动 h 个单位 再向上移动 k 个单位 就 可以得到 y a x h 2 k 的图象 当 h 0 k 0 时 将抛物线 y ax 2 向右平行移动 h 个单位 再向下移动 k 个单位可得 到 y a x h 2 k 的图象 当 h0 时 将抛物线向左平行移动 h 个单位 再向上移动 k 个单位可得到 y a x h 2 k 的图象 当 h 0 k0 时 开口向上 当 a0 当 x b 2a 时 y 随 x 的增大而减小 当 x b 2a 时 y 随 x 的增大而增大 若 a0 图象与 x 轴交于两点 A x1 0 和 B x2 0 其中的 x1 x2 是一元 二次方程 ax 2 bx c 0 a 0 的两根 这两点间的距离 AB x2 x1 另外 抛物线上任何一对对称点的距离可以 由 2x A b 2a A 为其中一点的横坐标 当 0 图象与 x 轴只有一个交点 当 0 时 图象落在 x 轴的上方 x 为任何实数时 都 有 y 0 当 a 0 时 图象落在 x 轴的下方 x 为任何实数时 都有 y0 a 0 则当 x b 2a 时 y 最小 大 值 4ac b 2 4a 顶点的横坐标 是取得极值时的自变量值 顶点的纵坐标 是极值的取值 6 用待定系数法求二次函数的解析式 1 当题给条件为已知图象经过三个已知点或已知 x y 的三对对应值时 可设解析式 为一般形式 y ax 2 bx c a 0 2 当题给条件为已知图象的顶点坐标或对称轴时 可设解析式为顶点式 y a x h 2 k a 0 3 当题给条件为已知图象与 x 轴的两个交点坐标时 可设解析式为两根式 y a x x1 x x2 a 0 7 二次函数知识很容易与其它知识综合应用 而形成较为复杂的综合题目 因此 以 二次函数知识为主的综合性题目是中高考的热点考题 往往以大题形式出现 折叠编辑本段其它

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论