




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档基础篇一、 单变量部分1、 求最小值及对应的x值答案当x=1最小值22、 2、(添负号)求最大值-23、(添系数)求最大值4、(添项)求最小值65、(添根号)求最大值26、(取倒数或除分子)求最大值7、(换元法)求最大值-98、(换元法)求最大值二、多变量部分1、(凑系数或消元法)已知,b0且4a+b=1求ab最大值2、(乘“1”法或拆“1”法)已知x0,y0,x+y=1求最小值253、(放缩法)已知正数a,b满足ab=a+b+3则求ab范围三、均值+解不等式1. 若正数a,b满足ab=a+2b+6则ab的取值范围是_2、已知x0,y0, x+2y+2xy=8则x+2y的最小值_4_练习1. 已知x0,y0,且则xy的最小值_64_2. 最小值_2_3. 设,则的最大值为_4. 已知,求函数的最大值_1_5. 已知x0,y0且求x+y的最小值_16_6. 已知则xy的最小值是_6_7. 已知a0,b0,a+b=2,则的最小值_8. 已知且满足则xy的最大值_3_11、已知x0,y0,z0,x-y+2z=0,则=_D_A、最小值8 B、最大值8C、最小值 D、最大值注:消y12、设则的最小值是_9_13、若,且ab0,则下列不等式中,恒成立的是(D )A、 B、 C、 D、14、若a,b,c,d,x,y是正实数,且,则有(C)A、P=Q B、 C、 D、PQ15、已知则有(D)A、有最大值 B、有最小值C、最大值1 D、最小值116、建造一个容积为8,深为2m的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为1760元17、函数y=x(3-2x)的最大值为18、函数的最大值是(C)A、 B、 C、 D、119、已知正数x,y满足则xy有(C)A、最小值 B、最大值16 C、最小值16 D、最大值20、若-4xQ D、P0,恒成立,则a的取值范围是_5、函数的值域_6、设a,b,c都是正实数,且a,b满足则使恒成立的c的取值范围是_D_A、 B、(0,10 C(0,12 D、(0,167、已知函数的图象恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为_8、已知函数当时,求f(x)的最小值答案:若对任意,f(x)6恒成立,求正实数a的取值范围_a4_9、对恒成立,求k的范围10、若a+b=2则的最小值为_6_11、设x,y,z均为大于1的实数,且z为x和y的等比中项,则的最小值为AA、 B、 C、 D、912、已知a1,b1,且lga+lgb=6,则的最大值为(B)A、6 B、9 C、12 D、1813、且x+y=5,则的最小值为(D)A、10 B、 C、 D、14、设a0,b0,若是与的等比中项,则的最小值为(B)A、8 B、4 C、1 D、15、函数的图象恒过点A,若点A在直线mx+ny-1=0(mn0)上,则的最小值为416、当x1时,不等式恒成立,则实数a的取值范围是(D)A、 B、 C、 D 、17、函数的图象恒过定点A,若点A在直线mx+ny+2=0上,其中m0,n0,则的最小值为(D)A、 B、4 C、 D、二、数列与均值1、已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是_4_2、已知等比数列an中a2=1,则其前3项的和S3的取值范围是 。3、设是正数等差数列,是正数等比数列,且,则(D)A、 B、 C、 D、4、已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是(D)A、0 B、1 C、2 D、4三、向量与均值1、给定两个长度为1的平面向量和,它们的夹角为。如图所示,点C在以O为圆心的圆弧上变动。若其中,则x+y最大值是_2_提示:取模,见模就平方2、若,(x0,b0)平分圆,则的最小值为_16_3、已知a,b为正数,且直线2x-(b-3)y+6=0与直线bx+ay-5=0相互垂直,则2a+3b的最小值为_25_提示:变分式,乘“1”法4、若直线2ax-by+2=0(a0,b0)过圆的圆心,则ab最大值是_5、(上海高考)已知直线过点P(2,1)且与x轴,y轴的正半轴分别交于A,B两点,O为坐标原点,则的最小值为46、(08海南)已知,直线和圆C:求直线斜率范围直线能否将圆C分割成弧长的比值为的两段圆弧,为什么?不能7、已知在中,BC=3,AC=4,P是AB上的点,则点P到AC,BC的距离最大值为_38、已知直线过点P(2,1),且与x轴,y轴的正半轴分别交于A,B两点,O是坐标原点,求三角形OAB面积最小值49、把长为12cm的铁丝截成两段,各自围成一个正三角形,那么这两个三角形面积之和最小值为(D)A、 B 、4 C、 D、10、若直线2ax-by+2=0(a0,b0)被圆截得弦长为4,则的最小值为(D)A、 B、 C、2 D、4五、三角与均值1、已知在中,角A,B,C所对的边分别是a,b,c且,c=2,角C为锐角,则周长的取值范围是(4,62、在,内角,的对边分别为,面积S,且求角C的大小若求a+b的取值范围3、在中,角A,B,C所对的边分别是a,b,c已知求角B的大小若a+c=1,求b的取值范围 4、【2015高考山东,理16】设.()求的单调区间;()在锐角中,角的对边分别为,若,求面积的最大值.【答案】(I)单调递增区间是;单调递减区间是(II) 面积的最大值为5、已知函数,将的图像向左平移个单位后得到的图像,且在区间内的最大值为.(1)求实数的值; (2)在中,内角的对边分别为a,b,c,若,且a+c=2,求的周长的取值范围。3,4)6、(14新课标1理数)16.已知分别为的三个内角的对边,=2,且,则面积的最大值为 .7、(2016山东)在ABC中,角A,B,C的对边分别为a,b,c,已知()证明:a+b=2c;()求cosC的最小值.【答案】()见解析;()8、(13全国新课标)在内角A,B,C对边分别为a,b,c,已知a=bcosC+csinB(I) 求B (II) 若b=2,求面积最大值 注:均值不等式求最值9、在中,角A,B,C的对边分别为a,b,c,若,则的取值范围是(D)A.(3,6)B.(3,6C.(2,4)D.(2,4 10、当时,函数的最小值为 4 均值不等式+余弦定理11、在中,角所对的边分别为,且,则的最大值为 .12、已知的三边长a,b,c成等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有用的企业面试题库含完整答案详解【名师系列】
- 卫星图像分析创新创业项目商业计划书
- 国际林业合作创新创业项目商业计划书
- 电信电子商务通信创新创业项目商业计划书
- 渔业养殖线上线下融合新零售模式创新创业项目商业计划书
- 翻译中的敏捷故事点估算创新创业项目商业计划书
- 保健食品国际化品牌创新创业项目商业计划书
- 知识产权交易与许可管理平台创新创业项目商业计划书
- 教师招聘之《小学教师招聘》考前冲刺练习题附参考答案详解(精练)
- 2025年安徽省无为县开城中学高三语文第一学期期末质量检测试题
- 急性会厌炎护理查房
- 混凝土模板工程验收表(含续表)GDAQ2090202
- GB/T 29466-2023板式热交换器机组
- 多模态大模型技术演进及研究框架
- 中国教育史全套
- GB/T 818-2000十字槽盘头螺钉
- GB/T 31298-2014TC4钛合金厚板
- 口腔科中医临床诊疗技术
- 老年肌肉衰减综合征肌少症培训课件
- 中学生物学教学技能与实践课件
- 井喷失控事故案例教育-井筒工程处课件
评论
0/150
提交评论