余弦函数图像与性质_第1页
余弦函数图像与性质_第2页
余弦函数图像与性质_第3页
余弦函数图像与性质_第4页
余弦函数图像与性质_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

余弦函数的图象与性质 正弦函数的图象 描点法几何法五点法 关键点 思考 余弦函数怎么画呢 余弦函数的图像 描点法几何法五点法思考 还有其他的方法吗 提示 由已知到未知 作余弦函数y cosx x R 的图象 思考 如何将余弦函数用诱导公式写成正弦函数 注 余弦曲线的图象可以通过将正弦曲线向左平移个单位长度而得到 余弦函数的图象叫做余弦曲线 正弦 余弦函数的图象 余弦函数的图象 正弦函数的图象 y cosx sin x x R 余弦曲线 0 1 0 1 0 2 1 正弦曲线 形状完全一样只是位置不同 正弦函数的性质 我们已经学习了正弦函数的性质 能不能类比学习余弦函数的性质呢 定义域值域周期性单调性奇偶性对称性具体有哪些不同呢 余弦函数的性质 我们从下面几个方面考虑 定义域和值域周期性单调性奇偶性对称性 x y o 1 1 2 2 3 4 1 正弦曲线的定义域和值域 R R y sinx xR 当x 时 函数值y取得最大值1 当x 时 函数值y取得最小值 1 观察下面图象 y cosx xR 当x 时 函数值y取得最大值1 当x 时 函数值y取得最小值 1 观察下面图象 因为终边相同的角的三角函数值相同 所以y sinx的图象在 与y sinx x 0 2 的图象相同 正弦曲线的周期 因为终边相同的角的三角函数值相同 所以y cosx的图象在 与y cosx x 0 2 的图象相同 余弦曲线的周期 由此可知 都是这两个函数的周期 是它的周期 最小正周期为 正弦 余弦函数的相同性质 y sinx x R y cosx x R 定义域 值域 周期性 x R y 1 1 T 2 3 正弦 余弦函数的奇偶性 sin x sinx x R y sinx x R 是奇函数 正弦函数的奇偶性 图像关于原点对称 3 正弦 余弦函数的奇偶性 cos x cosx x R y cosx x R 是偶函数 正弦 余弦函数的奇偶性 一般的 对于函数f x 的定义域内的任意一个x 都有f x f x 则称f x 为这一定义域内的偶函数 关于y轴对称 3 正弦 余弦函数的奇偶性 sin x sinx x R y sinx x R 是奇函数 cos x cosx x R y cosx x R 是偶函数 定义域关于原点对称 正弦 余弦函数的奇偶性 4 正弦 余弦函数的单调性 正弦函数的单调性 y sinx x R 增区间为 其值从 1增至1 0 1 0 1 0 1 减区间为 其值从1减至 1 2k 2k k Z 2k 2k k Z 4 正弦 余弦函数的单调性 余弦函数的单调性 y cosx x R 0 1 0 1 0 1 增区间为其值从 1到1 减区间为其值从 1到1 对称性 y sinx xR 观察下面图象 y cosx xR 观察下面图象 x R x R 1 1 1 1 x 2k 时ymax 1x 2k 时ymin 1 周期为T 2 周期为T 2 奇函数 偶函数 在x 2k 2k 上都是增函数 在x 2k 2k 上都是减函数 k 0 x k k 0 k 0 例子 例画出函数y cosx 1 x 0 2 的简图 并讨论性质 0 2 1 0 1 0 1 0 1 2 10 y cosx 1 x 0 2 y cosx x 0 2 还有其他方法吗 有什么性质呢 余弦函数的图象 小结 1 余弦曲线 五点法 2 注意与正弦函数的性质对比来理解余弦函数的性质 正弦函数得出 借助诱导公式 谢谢 作业 课本P333 5 X Y O x 0 010 10 1 1 用五点法作y sinx x 0 的简图 X Y O x 0 10 101 1 1 五点法作y cosx x 0 的简图 与x轴的交点 图象的最高点 图象的最低点 与x轴的交点 图象的最高点 图象的最低点 图象中关键点 简图作法 五点作图法 1 列表 列出对图象形状起关键作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论