详解一步一步设计开关电源_第1页
详解一步一步设计开关电源_第2页
详解一步一步设计开关电源_第3页
详解一步一步设计开关电源_第4页
详解一步一步设计开关电源_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

详解一步一步设计开关电源【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。希望大家喜欢大家一起努力!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮忙分析。我只带大家设计一款宽范围输入的, 12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback) 基本上可以满足要求备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用 flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和 MOS 来进行初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解分立式:PWM IC 与 MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说)集成式:就是将 PWM IC 与 MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指 PWM controller 和 power switch 集成在一起的芯片不限定于是 PSR 还是 SSR【第三步】3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用 ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)?设计之前最好都先看一下相应的 datasheet,自己确认一下简单的参数无论是选用 PI 的集成,或384x 或 OB LD 等分立的都需要参考一下 datasheet一般 datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步 PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的 RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。一般 AC2DC 的变换器,工作频率不宜设超过 100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于 EMC 的通过性频率太高,相应的 di/dt dv/dt 都会增加,除 PI 132kHz 的工作频率之外,大家可以多参考其它家的芯片,就会总结自己的经验出来对于磁芯的选择,是在开关频率和功率的基础,更多的是经验选取。当然计算的话,你需要得到更多的磁芯参数,包括磁材,居里温度,频率特性等等,这个是需要慢慢建立的20W 40W 范围内 EE25 EER25 EER28EFD25 EFD30 等均都可以【第六步】6. 设计变压器进行计算输入 input: 85265Vac输出 output: 12V 2A开关频率 Fsw: 70kHz磁芯 core: EER28/28L磁芯参数:Ae 82mm2以上均是已知参数,我们还需要设定一些参数,就可以进入下一步计算设定参数:效率 = 80%最大占空比:Dmax = 0.45磁感应强度变化:B= 0.2有了这些参数以后,我们就可以计算得到匝数和电感量计算开始输出功率 Po = 12V * 2A = 24W输入功率 Pin = Po/ = 24W/0.8 = 30W输入最低电压 Vin(min) = Vac(min)*sqr(2) = 85Vac * 1.414 = 120Vdc输入最高电压 Vin(max) = Vac(max)*sqr(2) = 265Vac * 1.414 = 375Vdc输入平均电流 Iav = Pin/Vin(min) = 30W/120Vdc = 0.25A输入峰值电流 Ipeak = 4 * Iav = 1A原边电感量 Lp = Vin(min) * Dmax/(Ipeak * Fsw) = 120Vdc * 0.45/(1A * 70K ) = 770 uH到此最重要的一步原边电感量已经求出,对于漏感及气隙,我不建议各位再去计算和验证漏感 Lleakage 5% * Lp上面计算了变压器的电感量,现在我们还需要得到相应的匝数才可以完成整个变压器的工作1)计算导通时间 Ton周期时间 T = Ton + Toff = 1/FswTon = T * DmaxFsw , Dmax 都是已知量 70kHz , 0.45 代入上式可得Ton = 6.43us2)计算变压器初级匝数Np = Vin(min)*Ton/(B Ae) = 120Vdc * 6.43us/(0.2 * 82mm2) = 47 T(这里的数是一定要取整的,而且是进位取整,我们变压器不可能只绕半圈或其它非整数圈)3)计算变压器 12V 主输出的匝数输出电压(Vo): 12 Vdc整流管压降(Vd): 0.7 Vdc绕组压降(Vs): 0.5 Vdc原边匝伏比(K) = Vi_min / Np= 120 Vdc / 47 T = 2.55输出匝数(Ns) = (输出电压(Vo) + 整流管压降(Vd) + 绕组压降(Vs) / 原边匝伏比(K)= (12 Vdc + 0.7Vdc + 0.5Vdc) / 2.55 = 6 T (已取整)4)计算变压器辅助绕组(aux turning)输出的匝数计算方法与12V主绕组输出一样因为 ST VIPer53DIP 副边反馈需低于 14.5 Vdc,故选取 12 Vdc 作为辅助电压;Na = 6 T到这一步,我们基本上就得出了变压器的主要参数原边绕组:47T 原边电感量:0.77mH 漏感 3 辅助: 6 - 5 输出:7,8,9 - 10,11,12对于输出的脚位,我们可以用两个,或者全用上,看各位自己的选择从原理图及 PCB 图上,1,6,7,8,9 为同名端,自己绕制时,起线需从这几个脚位起,同方向绕制变压器正式定义:1 - 2 : 0.25 x 1 x 24T7 - 10 : 0.50 x 2 x 6T8 - 11 : 0.50 x 2 x 6T9 - 12 : 0.50 x 2 x 6T2 - 3 : 0.25 x 1 x 23T6 - 5 : 0.25 x 1 x 6T2,4 并剪脚L1-3 : 0.77mH 0.25V1kHz 漏感低于 5% 磁材:PC40 或等同材质高压:原边vs副边 :3750Vac1mA 1min 无击穿无飞弧副边vs磁芯 :1500Vac1mA 1min 无击穿无飞弧阻抗:原边vs副边/绕组vs磁芯 :500Vdc 阻抗100M备注:这里采用三文治绕法,目的是为了降低漏感输出所有脚位全用上,目的是不浪费,同时降低输出绕组的内部阻抗可以将 PCB 和变压器发出去打样了, 剩下就是确定更多的参数并备料【第十步】10. 调试过程到以上部分,基本上一个电源算是设计完成,后面的就是焊板调试过程调试所需要的简单设备(必需的):调压器,示波器,万用表辅助设备:功率计,LCR电桥,电子负载焊完板以后,进行静态检查,如果有 LCR 电桥的话,可以先测一下变压器同名端,电感量等参数以后再焊接静态检查,主要看有没有虚焊,连锡等【第十一部】10. 调试过程(续1)静态测试以后,可以用万用表测一下输入,输出是否处于短路状态剩下就可以进行加电测试了开关电源的AC输入 接入调压器,或者 AC输入 接入功率计再接至调压器调压器处于 0Vac示波器 接在 ST VIPER53DIP 的 D S 两端 或 初级绕组两端亦可,交流耦合万用表电压档测输出,并空载接通调压器电源,开始升压,不需要快速,同时观看示波器从 0Vac 开始升,会看到示波器上波形会有浮动(改成直流耦合会很清楚看到电压在上升)当调压器的电压 至 4060Vac 区间时,如果示波器波形还没有变化的话,退回 0Vac,重新检查电源板一般空载状态,在 4060Vac 区间时,开关电源会开始工作,ST VIPER53DIP 也会进入工作模式,示波器上 Vds 波形会开始正常看输出电压是否达到预设值? 未达到,退回 0Vac 检查采样,反馈及输出回路如果都 OK 的状态下,再考虑将输入电压升至 220Vac遵循以上步骤调试的话,不会出现爆片或炸机现象备注:示波器需要隔离,或只允许 L N 输入,未隔离条件下 PE 的线不能接入,否则极易造成短路作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些设计中应该注意的地方,希望能对您有所启示。不管用什么软件,设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于界面风格与视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。)原理图设计是前期准备工作,经常见到初学者为了省事直接就去画板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 1制作物理边框封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳板断裂的情况,改用圆弧后就好了。2元件和网络的引入把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些:元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。3元件的布局元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则:(1)放置顺序先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。(2)注意散热元件布局还要特别注意散热问题。对于大功率电路,应该将那些发热元件如功率管、变压器等尽量靠边分散布局放置,便于热量散发,不要集中在一个地方,也不要高电容太近以免使电解液过早老化。 4布线布线原则走线的学问是非常高深的,每人都会有自己的体会,但还是有些通行的原则的。高频数字电路走线细一些、短一些好大电流信号、高电压信号与小信号之间应该注意隔离(隔离距离与要承受的耐压有关,通常情况下在2时板上要距离2mm,在此之上以比例算还要加大,例如若要承受的耐压测试,则高低压线路之间的距离应在3.5以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。)两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输人及输出用的印制导线应尽量避兔相邻平行,以免发生回授,在这些导线之间最好加接地线。走线拐角尽可能大于度,杜绝度以下的拐角,也尽量少用度拐角同是地址线或者数据线,走线长度差异不要太大,否则短线部分要人为走弯线作补偿走线尽量走在焊接面,特别是通孔工艺的尽量少用过孔、跳线单面板焊盘必须要大,焊盘相连的线一定要粗,能放泪滴就放泪滴,一般的单面板厂家质量不会很好,否则对焊接和都会有问题大面积敷铜要用网格状的,以防止波焊时板子产生气泡和因为热应力作用而弯曲,但在特殊场合下要考虑的流向,大小,不能简单的用铜箔填充了事,而是需要去走线元器件和走线不能太靠边放,一般的单面板多为纸质板,受力后容易断裂,如果在边缘连线或放元器件就会受到影响必须考虑生产、调试、维修的方便性 对模拟电路来说处理地的问题是很重要的,地上产生的噪声往往不便预料,可是一旦产生将会带来极大的麻烦,应该未雨绸缎。对于功放电路,极微小的地噪声都会因为后级的放大对音质产生明显的影响;在高精度转换电路中,如果地线上有高频分量存在将会产生一定的温漂,影响放大器的工作。这时可以在板子的角加退藕电容,一脚和板子上的地连,一脚连到安装孔上去(通过螺钉和机壳连),这样可将此分量虑去,放大器及也就稳定了。另外,电磁兼容问题在目前人们对环保产品倍加关注的情况下显得更加重要了。一般来说电磁信号的来源有个:信号源,辐射,传输线。晶振是常见的一种高频信号源,在功率谱上晶振的各次谐波能量值会明显高出平均值。可行的做法是控制信号的幅度,晶振外壳接地,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论