



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
命题与量词教案范文 大连市一0三中学高二数学组高效课堂导学案总课题命题与量词日期课题命题与量词课型新授课知识与技能了解命题的概念;理解全称量词和存在量词的含义;能够用全称量词符号表示全称命题,能用存在量词符号表述特称命题;会判断全称命题和特称命题的真假;教学目过程与方法会判断一个命题的真假,并会将一个命题改写成“若p,则q”的标形式.情感、与价值观通过引导学生观察、发现、合作与交流,让学生经历知识的形成过程,增加直接经验基础,增强学生学习的成功感,激发学生学习数学的兴趣.教学重点了解命题的定义;理解全称量词与存在量词的意义.学难点判定一个句子是不是命题;正确地判断全称命题和特称命题的真假.教学过程师生互动补充内容或错题订正 一、课题引入阅读下列语句,你能判断它们的真假吗? (1)矩形的对角线相等; (2)3?12; (3)3?12吗? (4)8是24的约数; (5)两条直线相交,有且只有一个交点 (6)他是个高个子. 二、问题探究1命题的概念在数学中,用语言、符号或式子表达的,可以判断真假的_叫做命题。 2命题的表示一般可用表示一个命题,如p、q、r?3按命题是否正确可将命题分为和真命题判断为的语句叫做真命题.假命题判断为的语句叫做假命题.4命题的形式在数学中,“若p,则q”是常见的命题形式,命题中的_叫做命题的条件,_叫做命题的结论5.全称量词、全称命题“所有的”“任意一个”这样的词语,这些词语在陈述中表示所述事物的,逻辑中通常叫做全称量词,用符号表示,含有的命题,叫做全称命题全称命题的符号表示全称命题“对M中任意一个x,有p(x)成立”可用符号简记为?x?M,p(x),读做“对任意x属于M,有p(x)成立”。 6.存在量词、存在命题“存在一个”“至少有一个”在陈述中表示所述事物的或,逻辑中通常叫做存在量词,并用符号“?”表示。 含有的命题叫做存在性命题。 存在性命题的符号表示存在性命题“存在M中的一个x0,使p(x)0)成立”可用符号简记为?x0?M,p(x07.全称命题、存在性命题真假的判定要判断一个全称命题是真命题,必须对限定集合M中的元素x验证p(x)成立;但要判定全称命题是假命题,却只要能举出集合M中的一个x?x0,使得p(x0)不成立即可(就是举一个反例)要判定一个存在性命题是真命题,只要在限定集合M中,能找到个x?x成立即可;否则,这一个存在性命0,使得p(x0)题就是假命题.例1判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; (3)2小于或等于2; (4)对数函数是增函数吗? (5)2x?15; (6)平面内不相交的两条直线一定平行; (7)明天下雨.大连市一0三中学高二数学组高效课堂导学案例2将下列命题改写成“若p,则q”的形式. (1)两条直线相交有且只有一个交点; (2)对顶角相等; (3)全等的两个三角形面积也相等.例3判断以下命题的真假 (1)?x?R,x2?2?0; (2)?x?N,x4?1; (3)?x?Z,x3?1; (4)?x?Q,x2?3.三当堂检测有效训练、反馈矫正1下列语句中,不能成为命题的是()A512Bx0C若ab,则ab0D三角形的三条中线交于一点2若A、B是两个集合,则下列命题中真命题是()A如果A?B,那么ABA B如果ABA,那么(?UA)B?C如果A?B,那么ABA D如果ABA,那么A?B3下列命题中真命题的个数为()面积相等的三角形是全等三角形;若xy0,则|x|y|0;若ab,则acbc;矩形的对角线互相垂直A1B2C3D44判断下列语句是否是命题,若不是,说明理由;若是,判断命题的真假 (1)奇数的平方仍是奇数; (2)两对角线垂直的四边形是菱形; (3)所有的质数都是奇数; (4)5x4x.5.下列命题中为全称命题的是()(A)有些圆内接三角形是等腰三角形;(B)存在一个实数与它的相反数的和不为0;(C)所有矩形都有外接圆;(D)过直线外一点有一条直线和已知直线平行6下列全称命题中真命题的个数是()末位是0的整数,可以被3整除;对?x?Z,2x2?1为奇数角平分线上的任意一点到这个角的两边的距离相等;(A)0(B)1(C)2(D)37下列存在性命题中假命题的个数是()?x?R,x?0;有的菱形是正方形;至少有一个整数,它既不是合数,也不是素数(A)0(B)1(C)2(D)38.用符号“?”、“?”语言表达下列命题()自然数的平方不小于零()存在一个实数,使2X2?X?1?09.判断下列命题的真假 (1)每个指数函数都是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行土地抵押合同范本
- 地板胶采购合同范本
- 快销招商合同范本
- 委托整年维修合同范本
- 船厂船板出售合同范本
- 印刷店租赁合同范本
- 服装定制销售合同范本
- 民房建筑合同范本
- 衣服定做转让合同范本
- 客人住宿安全合同范本
- YY/T 1851-2022用于增材制造的医用纯钽粉末
- GB/T 27518-2011西尼罗病毒病检测方法
- GB/T 26255-2022燃气用聚乙烯(PE)管道系统的钢塑转换管件
- GB/T 14202-1993铁矿石(烧结矿、球团矿)容积密度测定方法
- 生活中的会计课件
- 新时代中小学教师职业行为十项准则考核试题及答案
- 某工业区供水管道工程施工组织设计
- 学习罗阳青年队故事PPT在急难险重任务中携手拼搏奉献PPT课件(带内容)
- 模具保养记录表
- 皮内针讲课课件
- 新水浒q传乡试会试测验题目
评论
0/150
提交评论