高中数学 1.2应用举例(第1课时)课件 新人教A版必修5.ppt_第1页
高中数学 1.2应用举例(第1课时)课件 新人教A版必修5.ppt_第2页
高中数学 1.2应用举例(第1课时)课件 新人教A版必修5.ppt_第3页
高中数学 1.2应用举例(第1课时)课件 新人教A版必修5.ppt_第4页
高中数学 1.2应用举例(第1课时)课件 新人教A版必修5.ppt_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2应用举例 1 问题一 在日常生活和工农业生产中 为了达到某种目的 常常想测得一个点与另一个不可到达的点间的距离或在远处的两个物体之间的距离 这样的想法能实现吗 如何实现呢 例如 湖北省十堰市郧县柳坡镇马蹄沟村 是一个世代被大山阻隔的小山村 在无法承载贫穷重负和生命重压之下 毅然决然以一己之力 用比较落后的方式 开始了一段长达五年的艰难的开山之旅 他们经历了令人难以想象的风险 终于打通了一条长400米的隧洞 从而大大拉近了闭塞小山村与现代大都市的时代距离 试思考 在隧洞未打通之前 我们如何测量小山村与大都市的距离 学习过了正 余弦定理后 上述所提的问题是能够实现 有时由于条件所限 需要测量像一个点与河对面一点或船到礁石这类不可到达点的距离时 一般作法是在河这边或主航道上发生一段位移 从两个不同地点测出到这个不能到达点的视角及这段位移的长度 从而通过计算得出答案 从而将问题转化为一个数学问题 已知一个三角形的两角及夹边 要求这个三角形的其中一边 显然只要根据正弦定理 就可以达到目的 例如 当我们想在河这边测出河对面两点之间距离的时候 往往可以这样做 在河这边的两个不同的地点分别测出望河对面两点及另一地点的视角 再结合这两个地点之间的距离 通过应用正弦定理 余弦定理计算求得河对面两点之间的距离 解决实际测量问题的过程一般要充分认真理解题意 正确做出图形 把实际问题里的条件和所求转换成三角形中的已知和未知的边 角 通过建立数学模型来求解 例2 如图 a b两点都在河的对岸 不可到达 设计一种测量a b两点间距离的方法 解 测量者可以在河岸边选定两点c d 测得cd a 并且在c d两点分别测得 bca acd cdb bda 在 adc和 bdc中 应用正弦定理得 计算出ac和bc后 再在 abc中 应用余弦定理计算出a b两点间的距离 解斜三角形应用题的一般步骤 1 分析 理解题意 分清已知与未知 画出示意图 2 建模 根据已知条件与求解目标 把已知量与求解量尽量集中在有关的三角形中 建立一个解斜三角形的数学模型 3 求解 利用正弦定理或余弦定理有序地解出三角形 求得数学模型的解 4 检验 检验

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论