高中数学 2.2.1综合法与分析法课件 新人教A版选修12.ppt_第1页
高中数学 2.2.1综合法与分析法课件 新人教A版选修12.ppt_第2页
高中数学 2.2.1综合法与分析法课件 新人教A版选修12.ppt_第3页
高中数学 2.2.1综合法与分析法课件 新人教A版选修12.ppt_第4页
高中数学 2.2.1综合法与分析法课件 新人教A版选修12.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成才之路 数学 路漫漫其修远兮吾将上下而求索 人教a版 选修1 11 2 推理与证明 第二章 2 2直接证明与间接证明 第二章 2 2 1综合法与分析法 1 结合已经学过的数学实例 了解直接证明的两种基本方法 分析法和综合法 了解分析法和综合法的思考过程 特点 2 进一步体会合情推理 演绎推理以及二者之间的联系与差异 重点 综合法和分析法的概念及思考过程 特点 难点 综合法和分析法的应用 新知导学1 定义利用 和某些数学 等 经过一系列的 最后推导出所要证明的结论成立 这种证明方法叫做综合法 综合法证明不等式 已知条件 定义 定理 公理 推理论证 2 综合法的特点从 已知 看 逐步推向 其逐步推理 是由 导 实际上是寻找 已知 的 条件 用综合法证明数学问题 证明步骤严谨 逐层递进 步步为营 条理清晰 形式简洁 宜于表达推理的思维轨迹 并且综合法的推理过程属于演绎推理 它的每一步推理得出的结论都是正确的 不同于合情推理 使用综合法证明问题 有时从条件可得出几个结论 哪个结论才可作为下一步的条件是分析的要点 所以如何找到 和有效的 是有效利用综合法证明数学问题的关键 可知 未知 因 果 必要 切入点 推理途径 p q 答案 d 答案 9 3 设a b 0 求证 3a3 2b3 3a2b 2ab2 证明 因为a b 0 所以a b 0 3a2 2b2 3 a2 b2 3 a b a b 0 所以3a3 2b3 3a2b 2ab2 3a2 a b 2b2 b a 3a2 2b2 a b 0 即3a3 2b3 3a2b 2ab2 新知导学4 分析法定义从要证明的 出发 逐步寻求使它成立的 条件 直至最后 把要证明的结论归结为判定一个明显成立的条件 已知条件 定理 定义 公理等 这种证明方法叫做分析法 分析法证明不等式 结论 充分 5 分析法的特点分析法是综合法的逆过程 即从 未知 看 执果索因 逐步靠拢 其逐步推理 实际上是要寻找 结论 的 条件 分析法的推理过程也属于演绎推理 每一步推理都是严密的逻辑推理 需知 已知 充分 p 7 分析法与综合法的区别与联系 1 区别 综合法是 由因导果 而分析法则是 执果索因 它们是截然相反的两种证明方法 分析法便于我们去寻找思路 而综合法便于过程的叙述 两种方法各有所长 在解决具体的问题时 结合起来运用效果会更好 2 联系 在分析法中 从结论出发的每一步所得到的判断都是使结论成立的 条件 最后的一步归结为已被证明了的事实 因此从分析法的最后一步又可以倒推回去 直到结论 这个倒推的证明过程就是 法 充分 综合 分析法便于思考 叙述较繁 综合法叙述条理清楚 不便于思考 综合法是分析法的逆向思维过程 表述简单 条理清楚 所以实际证题时 可将分析法 综合法结合起来使用 即 找思路 写过程 在实际证题中 常将待证结论作为条件和其他已知条件结合起来分析 看能够得出什么 结论 来逐步探求证题的思路 也是常用方法 分析 综合 答案 b c a 已知a b是正数 且a b 1 综合法的应用 方法规律总结 1 综合法证明数学命题的步骤第一步 分析条件 选择方向 认真发掘题目的已知条件 特别是隐含条件 分析已知与结论之间的联系 选择相关的公理 定理 公式 结论 确定恰当的解题方法 第二步 转化条件 组织过程 把题目的已知条件 转化成解题所需要的语言 主要是文字 符号 图形三种语言之间的转化 组织过程时要有严密的逻辑 简洁的语言 清晰的思路 第三步 适当调整 回顾反思 解题后回顾解题过程 可对部分步骤进行调整 并对一些语言进行适当的修饰 反思总结解题方法的选取 分析 直接利用均值不等式做不容易 考虑分析法 分析法的应用 方法规律总结 分析法证明不等式的依据 方法与技巧 1 解题依据 分析法证明不等式的依据是不等式的基本性质 已知的重要不等式和逻辑推理的基本理论 2 适用范围 对于一些条件复杂 结构简单的不等式的证明 经常用综合法 而对于一些条件简单 结论复杂的不等式的证明 常用分析法 3 思路方法 分析法证明不等式的思路是从要证的不等式出发 逐步寻求使它成立的充分条件 最后得到的充分条件是已知 或已证 的不等式 4 应用技巧 用分析法证明数学命题时 一定要恰当地用好 要证 只需证 即证 等词语 求证 当x 0时 sinx x 分析 不等式恒成立问题 可以转化为函数的最值问题来解决 解析 要证x 0时 sinx x 只需证x 0时 sinx x 0即可 设f x sinx x 则即证x 0时 f x f 0 即证x 0时 f x 的最大值小于或等于0 综合法和分析法的综合应用 f x sinx x f x cosx 1 当x 0时 f x 0 f x 在 0 上单调递减 当x 0时 f x max f 0 0 sinx x 0成立 原不等式成立 方法规律总结 在实际解决问题中 分析法与综合法往往结合起来使用 先分析由条件能产生什么结论 再分析要产生需要的结论需要什么条件 逐步探求两者之间的联系 寻找解答突破口 确定解题步骤 然后用综合法写出解题的过程 设a b是相异的正数 求证 关于x的一元二次方程 a2 b2 x2 4abx 2ab 0没有实数根 解析 要证明 a2 b2 x2 4abx 2ab 0没有实数根 只需证 0即可 4ab 2 4 a2 b2 2ab 16a2b2 8a3b 8b3a 8ab 2ab a2 b2 8ab a2 2ab b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论