高等数学教案ch 8.3 全微分及其应用.doc_第1页
高等数学教案ch 8.3 全微分及其应用.doc_第2页
高等数学教案ch 8.3 全微分及其应用.doc_第3页
高等数学教案ch 8.3 全微分及其应用.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.3 全微分及其应用 一、全微分的定义 根据一元函数微分学中增量与微分的关系, 有 偏增量与偏微分: f(x+Dx, y)-f(x, y)fx(x, y)Dx, f(x+Dx, y)-f(x, y)为函数对x的偏增量, f x(x, y)Dx为函数对x的偏微分; f(x, y+Dy)-f(x, y)fy(x, y)Dy, f(x, y+Dy)-f(x, y)为函数)对y的偏增量, f y(x, y)Dy为函数对y的偏微分. 全增量: Dz= f(x+Dx, y+Dy)-f(x, y). 计算全增量比较复杂, 我们希望用Dx、Dy的线性函数来近似代替之. 定义 如果函数z=f(x, y)在点(x, y)的全增量 Dz= f(x+Dx, y+Dy)-f(x, y) 可表示为 , 其中A、B不依赖于Dx、Dy 而仅与x、y 有关, 则称函数z=f(x, y)在点(x, y)可微分, 而称ADx+BDy为函数z=f(x, y)在点(x, y)的全微分, 记作dz, 即 dz=ADx+BDy. 如果函数在区域D内各点处都可微分, 那么称这函数在D内可微分. 可微与连续: 可微必连续, 但偏导数存在不一定连续. 这是因为, 如果z=f(x, y)在点(x, y)可微, 则 Dz= f(x+Dx, y+Dy)-f(x, y)=ADx+BDy+o(r),于是 , 从而 . 因此函数z=f(x, y)在点(x, y)处连续. 可微条件: 定理1(必要条件) 如果函数z=f(x, y)在点(x, y)可微分, 则函数在该点的偏导数、必定存在, 且函数z=f(x, y)在点(x, y)的全微分为 . 证 设函数z=f(x, y)在点P(x, y)可微分. 于是, 对于点P的某个邻域内的任意一点P (x+Dx, y+Dy), 有Dz=ADx+BDy+o(r). 特别当Dy=0时有 f (x+Dx, y)-f(x, y)=ADx+o(|Dx|). 上式两边各除以Dx, 再令Dx0而取极限, 就得 , 从而偏导数存在, 且. 同理可证偏导数存在, 且. 所以 . 简要证明: 设函数z=f(x, y)在点(x, y)可微分. 于是有Dz=ADx+BDy+o(r). 特别当Dy=0时有 f (x+Dx, y)-f(x, y)=ADx+o(|Dx|). 上式两边各除以Dx, 再令Dx0而取极限, 就得 , 从而存在, 且. 同理存在, 且. 所以. 偏导数、存在是可微分的必要条件, 但不是充分条件. 例如, 函数在点(0, 0)处虽然有f x(0, 0)=0及f y(0, 0)=0, 但函数在(0, 0)不可微分, 即Dz-fx(0, 0)Dx+fy(0, 0)Dy不是较r高阶的无穷小. 这是因为当(Dx, Dy)沿直线y=x趋于(0, 0)时, . 定理2(充分条件) 如果函数z=f(x, y)的偏导数、在点(x, y)连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数. 按着习惯, Dx、Dy分别记作dx、dy, 并分别称为自变量的微分, 则函数z=f(x, y)的全微分可写作 . 二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u=f (x, y, z) 的全微分为 . 例1 计算函数z=x2y +y2的全微分. 解 因为, , 所以dz=2xydx+(x2+2y)dy . 例2 计算函数z=exy在点(2, 1)处的全微分. 解 因为, , , , 所以 dz=e2dx+2e2dy . 例3 计算函数的全微分. 解 因为, , , 所以 . *二、全微分在近似计算中的应用 当二元函数z=f (x, y)在点P (x, y)的两个偏导数f x (x, y) , f y (x, y)连续, 并且|Dx|, |Dy|都较小时, 有近似等式Dz dz= f x (x, y)Dx+f y (x, y)Dy , 即 f (x+Dx, y+Dy) f(x, y)+f x (x, y)Dx+f y (x, y)Dy . 我们可以利用上述近似等式对二元函数作近似计算. 例4 有一圆柱体, 受压后发生形变, 它的半径由20cm增大到20. 05cm, 高度由100cu减少到99cm. 求此圆柱体体积变化的近似值. 解 设圆柱体的半径、高和体积依次为r、h和V, 则有 V=p r 2h . 已知r=20, h=100, Dr=0. 05, Dh=-1. 根据近似公式, 有 DVdV=VrDr+VhDh=2prhDr+pr2Dh =2p201000. 05+p202(-1)=-200p (cm3). 即此圆柱体在受压后体积约减少了200p cm3. 例5 计算(1. 04)2. 02的近似值. 解 设函数f (x, y)=x y . 显然, 要计算的值就是函数在x=1.04, y=2.02时的函数值f(1.04, 2.02). 取x=1, y=2, Dx=0.04, Dy=0.02. 由于f (x+Dx, y+Dy) f(x, y)+f x(x, y)Dx+f y(x, y)Dy =x y+yxy-1Dx+x yln x Dy , 所以(1.04)2. 0212+212-10.04+12ln10.02=1.08. 例6 利用单摆摆动测定重力加速度g的公式是.现测得单摆摆长l与振动周期T分别为l=1000.1cm、T=20.004s. 问由于测定l与T的误差而引起g的绝对误差和相对误差各为多少? 解 如果把测量l与T所产生的误差当作|l|与|T|, 则利用上述计算公式所产生的误差就是二元函数的全增量的绝对值|g|. 由于|l|, |T|都很小, 因此我们可以用dg来近似地代替g. 这样就得到g的误差为 ,其中dl与dT为l与T的绝对误差. 把l=100, T=2, dl=0.1, T=0.004代入上式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论