圆的基本性质2讲义.doc_第1页
圆的基本性质2讲义.doc_第2页
圆的基本性质2讲义.doc_第3页
圆的基本性质2讲义.doc_第4页
圆的基本性质2讲义.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

个性化辅导讲义学生: 科目: 第 阶段第 次课 教师: 课 题圆的基本性质教学目标熟悉圆的各种概念会利用圆的概念解决一些问题重点、难点圆的定义及相关概念、垂径定理及其推论考点及考试要求教学内容一圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。考点2:确定圆的条件;圆心和半径 圆心确定圆的位置,半径确定圆的大小; 不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。弦心距:圆心到弦的距离叫做弦心距。弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。弓高:弓形中弦的中点与弧的中点的连线段。(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。 考点5点和圆的位置关系 设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。 点在圆外dr;点在圆上d=r;点在圆内 dr;【典型例题】例1 在ABC 中,ACB=90,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以为半径作圆,试确定A,B,M三点分别与C有怎样的位置关系,并说明你的理由。MABC例2已知,如图,CD是直径,AE交O于B,且AB=OC,求A的度数。DOEBAC例3 O平面内一点P和O上一点的距离最小为3cm,最大为8cm,则这圆的半径是_cm。例4 在半径为5cm的圆中,弦ABCD,AB=6cm,CD=8cm,则AB和CD的距离是多少?例5 如图,O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,,ABDCOE求CD的长例6.已知:O的半径0A=1,弦AB、AC的长分别为,求的度数【考点速练】1.下列命题中,正确的是( ) A三点确定一个圆B任何一个三角形有且仅有一个外接圆 C任何一个四边形都有一个外接圆 D等腰三角形的外心一定在它的外部2如果一个三角形的外心在它的一边上,那么这个三角形一定是( ) A等腰三角形B直角三角形C等边三角形D钝角三角形3圆的内接三角形的个数为( ) A1个 B2 C3个D无数个4三角形的外接圆的个数为( ) A1个 B2 C3个D无数个5下列说法中,正确的个数为( ) 任意一点可以确定一个圆;任意两点可以确定一个圆;任意三点可以确定一个圆;经过任一点可以作圆;经过任意两点一定有圆 A1个 B2个 C3个 D4个6.与圆心的距离不大于半径的点所组成的图形是( ) A.圆的外部(包括边界); B.圆的内部(不包括边界); C.圆; D.圆的内部(包括边界)7.已知O的半径为6cm,P为线段OA的中点,若点P在O上,则OA的长( ) A.等于6cm B.等于12cm; C.小于6cm D.大于12cm8.如图,O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( ) A.2个 B.3个 C.4个 D.5个9.如图,A是半径为5的O内一点,且OA=3,过点A且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条10.要浇铸一个和残破轮片同样大小的圆形轮片,需要知道它的半径,用圆规和直尺在图中作出它的一条半径(要求保留作图痕迹)11.如图,已知在中,AB=3cm,AC=4cm,以点A为圆心,AC长为半径画弧交CB的延长线于点D,求CD的长CBDA12、如图,有一圆弧开桥拱,拱的跨度AB16cm,拱高CD4cm,那么拱形的半径是m。13、 ABC中,AB=AC=10,BC=12,则它的外接圆半径是。14、如图,点P是半径为5的O内一点,且OP3,在过点P的所有的O的弦中,弦长为整数的弦的条数为。15.思考题如图所示,已知O的半径为10cm,P是直径AB上一点,弦CD过点P,CD=16cm,过点A和B分别向CD引垂线AE和BF,求AE-BF的值.ABDCEPFO【作业】日期 姓名 完成时间 成绩 1、在半径为2的圆中,弦长等于2的弦的弦心距为 _ 2. ABC的三个顶点在O上,且AB=AC=2,BAC=120,则O的半径= _, BC= _.3 P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_4. 如图,A,B,C三点在O上,且AB是O的直径,半径ODAC,垂足为F,若A=30,OF=3,则OA=_ , AC=_ , BC= _ .5.如图5,为直径是52cm圆柱形油槽,装入油后,油深CD为16cm,那么油面宽度AB= _ 6.如图6, O中弦ABAC,D,E分别是AB,AC的中点. 若AB=AC,则四边形OEAD是 形;若OD=3,半径,则AB= _cm, AC= _ _ cm 7.如图7,O的直径AB和弦CD相交于点E,已知AE=8cm,EB=4cm,CEA=30,则CD的长为_(5) (6) (7)二垂径定理及其推论【考点速览】考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤推论1:平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤弦的垂直平分线经过圆心,并且平分弦所对的两条孤平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤推论2圆的两条平行弦所夹的孤相等垂径定理及推论1中的三条可概括为: 经过圆心;垂直于弦;平分弦(不是直径);平分弦所对的优弧;平分弦所对的劣弧以上五点已知其中的任意两点,都可以推得其它两点ABDCONM【典型例题】例1 如图AB、CD是O的弦,M、N分别是AB、CD的中点,且求证:AB=CD例2已知,不过圆心的直线交O于C、D两点,AB是O的直径,AE于E,BF于F。求证:CE=DF 例3 如图所示,O的直径AB15cm,有一条定长为9cm的动弦CD在弧AmB上滑动(点C与点A,点D与B不重合),且CECD交AB于E,DFCD交AB于F。(1)求证:AEBFOABCDEFm(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明,并求出这个定值,若不是,请说明理由。例4 ABCDPO。.如图,在O内,弦CD与直径AB交成角,若弦CD交直径AB于点P,且O半径为1,试问: 是否为定值?若是,求出定值;若不是,请说明理由.【考点速练】1.已知O的半径为2cm,弦AB长,则这条弦的中点到弦所对劣孤的中点的距离为( ). A1cm B.2cm C. D.cm3如图1,O的半径为6cm,AB、CD为两弦,且ABCD,垂足为点E,若CE=3cm,DE=7cm,则AB的长为( )A10cm B.8cm C. D.4.有下列判断:直径是圆的对称轴;圆的对称轴是一条直径;直径平分弦与弦所对的孤;圆的对称轴有无数条.其中正确的判断有( ) A0个 B.1个 C.2个 D.3个ADECBO图15如图2,同心圆中,大圆的弦交AB于C、D若AB=4,CD=2,圆心O到AB的距离等于1,那么两个同心圆的半径之比为( ) A3:2 B.:2 C.: D.5:46.等腰三角形腰长为4cm,底角为,则外接圆直径为( ) A2cm B.4cm C.6cm D.8cm 7.如图,O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是 .AOCDB图28.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是_ _m.ABDCO8009.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,求水的最大深度CDABCD图10.如图,已知ABC中,ACB=90,AC=6cm,BC=8cm,以C为圆心,CA为半径作圆交斜边AB于D,则AD的长为 。11.已知:如图,在O中,弦AB的长是半径OA的倍,C为弧AB的中点,AB、OC相交于点M.试判断四边形OACB的形状,并说明理由.12.如图所示,在O中,弦ABAC,弦BDBA,AC、BD交直径MN于E、F.求证:ME=NF.OABDCEFMNABMNCP13.(思考题)如图,与交于点A,B,过A的直线分别交,于M,N,C为MN的中点,P为的中点,求证:PA=PC.【作业】日期 姓名 完成时间 成绩 1.已知O的直径AB=10cm,弦CDAB,垂足为M。且OM=3cm,则CD= .2D是半径为5cm的O内的一点,且D0=3cm,则过点D的所有弦中,最小的弦AB= cm.3.若圆的半径为2cm,圆中一条弦长为cm,则此弦所对应弓形的弓高是 .4.已知O的弦AB=2cm,圆心到AB的距离为n,则O的半径R= ,O的周长为 . O的面积为 .5在O中,弦AB=10cm,C为劣孤的中点,OC交AB于D,CD=1cm,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论