概率与统计备选题.doc_第1页
概率与统计备选题.doc_第2页
概率与统计备选题.doc_第3页
概率与统计备选题.doc_第4页
概率与统计备选题.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率与统计备选题1、某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。()求当天商品不进货的概率;()记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。2、某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160(I)完成如下的频率分布表: 近20年六月份降雨量频率分布表降雨量70110140160200220频率(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率3、(2011北京)见文科4、(2011福建)(2011福建)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准(1)已知甲厂产品的等级系数X1的概率分布列如下所示:且X1的数字期望EX1=6,求a,b的值;(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望()在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由注:(1)产品的“性价比”=;(2)“性价比”大的产品更具可购买性5、(2011陕西)如图,A地到火车站共有两条路径和,据统计,通 过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:时间(分钟)10202030304040505060的频率的频率0现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .6、(2011安徽)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.()如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?()若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);()假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。7、(09辽宁)某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。()设X表示目标被击中的次数,求X的分布列;()若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)w.w.w.k.s.5.u.c.o.m 8、(2010福建)设是不等式的解集,整数。()记“使得成立的有序数组”为事件,试列举包含的基本事件;()设,求的分布列及其数学期望。9、(2010天津)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。()假设这名射手射击5次,求恰有2次击中目标的概率()假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;()假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。10|、(09安徽)某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区,B肯定是受A感染的。对于C,因为难以判定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是1/2.同样也假设D受A、B和C感染的概率都是1/3.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)。11、(09福建)从集合的所有非空子集中,等可能地取出一个。记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;记所取出的非空子集的元素个数为,求的分布列和数学期望E 12、(09湖南)为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m (I)求他们选择的项目所属类别互不相同的概率;(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。13、(09广东)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间进行分组,得到频率分布直方图如图5 (1)求直方图中的值; (2)计算一年屮空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示已知)w.w.w.k.s.5.u.c.o.m 14、(08福建)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.()求他不需要补考就可获得证书的概率;()在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.15、(08辽宁)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量234频数205030()根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;()已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元)若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望16、(08天津)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.()求乙投球的命中率;()若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.17、(08广东)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元设1件产品的利润(单位:万元)为(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?18、(07文东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗 (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)19、如图,由M到N的电路中有4个元件,分别标为,电流通过的概率都是,电流通过的概率是,电流能否通过各元件相互独立,已知中至少有一个能通过电流的概率为(1)求;(2)求电流能在M与N之间通过的概率;(3)表示中能通过电流的元件个数,求的期望。20、A、B两个投资项目的利润分别为随机变量和。根据市场分析,和的分布列分别为5%10%2%8%12%P0802P020503在A、B两个项目上各投资100万元,和分别表示投资项目A和B所获得的利润,求方差;将万元投资A项目,万元投资B项目,表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求的最小值,并指出为何值,取得最小值。(注:)21、在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次。某同学在A处的命中率为,在B处的命中率为,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为02345P求的值;分别求的值;试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。 为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:评估得分50,60)60,70)70,80)80,90评定类型不合格合格良好优秀贷款金额(万元)0200400800 为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下: ()估计该系统所属企业评估得分的中位数; ()该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差 第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm): 若身高在175cm以上(包括175cm)定义为“高个子”, 身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。 (1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是高个子”的概率是多少? (2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,甲运动员乙运动员若将频率视为概率,回答下列问题,(1)求甲运动员击中10环的概率(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及E某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下记成绩不低于90分者为“成绩优秀”(I)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(II)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为(1) 记复数(为虚数单位),求事件“为实数”的概率;(2) 求点落在四边形ABCD(含边界)的概率。其中四边形是不等式组表示的平面区域。概率与统一(文)随着生活水平的提高,儿童的身高越来越成为人们关注的话题,某心里研究机构从边区某小学四年级学生中随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。现先用分层抽样的方法从各组中选取20人作为样本,然后再从第四组或第五组选出的人中选出两人进行进一步分析,则这两人来自不同组的概率是多少?若将身高超过称为正常,低于称为偏低。抽出的20名学生按性别与身高统计具体分布情况如下:男女正常25偏低103用假设检验的方法分析:有多大把握认为该年级学生的身高是否正常与性别有关?()学校推荐学生参加某著名高校的自主招生考试,初步确定了文科生中有资格的学生40人,其中男生10名,女生30名,决定按照分层抽样的方法选出一个4人小组进行培训。求40人中某同学被选到培训小组的概率,并求出培训小组中男、女同学的人数;经过一个月的培训,小组决定选出两名同学进行摸拟面试,方法是先从小组里选出一名同学面试,该同学面试后,再从小组内剩下的同学中选一名同学面试求选出的两名同学中恰有一名男同学的概率;面试时,每个同学回答难度相当的5个问题并评分,第一个同学得到的面试分数分别为:68,70,71,72,74,请问哪位同学的成绩更稳定?并说明理由。(01,1名、3名,0。5;第二个同学更稳定)3、长沙市一中学生会于2012年元月6日在学校高一、高二、高三学生中开展一次身高调查,受访人数分布如下表:学历高一高二高三女生403020男生2030在受访学生中按年组用分层抽样的方法抽取18个人的样本,每人抽取的概率为,求的值。现若从高二3个女生、2个男生中任取2人,求所取学生都是女生的概率。()袋中有若干个大小与形状完全相同的小球,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个,已知从中任意抽取1个小球,取到2号球的概率为求的值; 从袋中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为(i)记“”为事件A,求事件A的概率;(ii)在区间内任取2个实数,求事件“恒成立”的概率。()我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况。现采用抽样调查的方式,获得了位居民某年的月均用水量(单位:),样本统计结里如下图表:分组频数频率25505分别求出的值;若从样本中月均用水量在5,6(单位:)内5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的概率(5位居民月=均用水量均不相等)。()某市中学生田径运动会总分获得冠、亚、季军的代表人数情况如下表。大会组委会为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中亚军队有5人。性别 名次冠军队亚军队季军队男生3030*女生302030求季军队的男运动员的人数;从前排就坐的亚军队5人(3男2女)中随机抽取2人上台领奖,请列出所有的基本事件,并求亚军队中有女生上台领奖的概率;抽奖活动中,运动员通过操作按键,使电脑自动产生0,4内两个随机数,随后电脑自动运行如下所示的程序框图相应程序。若电脑显示“中奖”,则该运动员获相应奖品,若电脑显示“谢谢”,则不中奖。求该运动员获得奖品的概率。()7、“根据中华人民共和国道路交通安全法规定:车辆驾驶员血液浓度在(不含80)之间,属于酒后驾车,血液酒精浓度在(含80)以上时,属醉酒驾车。”2011年8月15晚8时开始某市交警一队在该市一交通岗前设点对过往车辆进行检查,经过两个小时共查出酒后驾车者60名,图甲是用酒精测试仪对这60名酒后驾车者血液中酒精浓度进行检测后依所得结课画出的频率分布直方图。求这60名酒后驾车者中属于醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点);统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S值,并说明S的统计意义;(图乙中数据与分别表示图甲中各组的组中值及频率)(3)本次行动中,吴、刘两位先生都被酒精测试仪测得酒精浓度(含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精浓度在(含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率。 ()8、“五。一”放假期间,某旅行社共组织1000名游客,分三批到北京、香港两地旅游,为了做好游客的行程安排,旅行社对参加两地旅游的游客人数进行了统计,列表如下:第一批第二批第三批北京200香港150160已知在参加北京、香港两地旅游的1000名游客中,第二批参加北京游的频率是现用分层抽样的方法在所有游客中抽取50名游客,协助旅途后勤工作,问应在第三批参加旅游的游客中抽取多少游客?已知,求第三批参加旅游的游客中到北京旅游人数比到香港旅游人数多的概率。()9、某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99 乙:110,115,90,85,75,115,110(1)画出这两组数据的茎叶图;(2)求出这两组数据的平均值和方差(用分数表示);并说明哪个车间的产品较稳定;(3)从甲中任取一个数据,从乙中任取一个数据,求满足条件的概率。(甲稳定,P(A)=2/3)校高三某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下图,据此解答如下问题:(1)求分数在的频率及全班的人数;(2)求分数在之间的频数,并计算频率分布直方图中间的矩形的高;(3)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在之间的概率。(25,)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组8第二组第三组15第四组10第五组5合计50写出表中位置的数据;为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率。()某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下记成绩不低于90分者为“成绩优秀”(I)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(II)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关13、为了丰富同学们的课余生活,长郡中学开展了诸多社团活动,现用分层抽样的方法从“国家政治研究社”,“街舞”,“魔术”,“羽毛球”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)社团相关人数抽取人数国家政治研究社24a街舞183魔术b5羽毛球12C求abc的值;(2)若从“国家政治研究社”与“羽毛球”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率(2011江西)某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中的3杯为A饮料,另外的2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格假设此人对A和B饮料没有鉴别能力(1)求此人被评为优秀的概率(2)求此人被评为良好及以上的概率(2011辽宁)某农场计划种植某种新作物为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中随机选n小块地种植品种甲,另外n小块地种植品种乙()假设n=2,求第一大块地都种植品种甲的概率:()试验时每大块地分成8小块即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?(2011北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树乙组记录中有一个数据模糊,无法确认,在图中以X表示(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率(2011福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bc(I) 若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(II)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率(II)某校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,图是按成绩分组得到的频率分布表的一部分(每一组均包括左端点数据而不包括右端点数据),且第3组、第4组、第5组的频数之比依次为3:2:1(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩较高的第3组、第4组、第5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生由考官A面试,求第4组至少有一名学生被考官A面试的概率某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数412423210()分别估计用A配方,B配方生产的产品的优质品率;()已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)(2011湖南)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160()完成如下的频率分布表近20年六月份降雨量频率分布表降雨量70110140160200220频率()假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论