


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题 : 12.2.2 三角形全等的条件2【教学目标】:知识与技能:理解三角形全等的“边角边”的条件掌握三角形全等的“SAS”条件,了解三角形的稳定性能运用“SAS”证明简单的三角形全等问题过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程掌握三角形全等的“边角边”条件在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神教学重点:三角形全等的条件教学难点:寻求三角形全等的条件教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。 课前准备 全等三角形纸片、三角板、 【教学过程】:一、创设情境,导入新课 师在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等给出三个条件时,有四种可能,能说出是哪四种吗? 生三内角、三条边、两边一内角、两内角一边 师很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等今天我们接着研究第三种情况:“两边一内角” (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况? 生两种 1两边及其夹角 2两边及一边的对角 师按照上节方法,我们有两个问题需要探究(二)探究1:先画一个任意ABC,再画出一个A/B/C/,使AB= A/B/、AC=A/C/、A=A/(即保证两边和它们的夹角对应相等)把画好的三角形A/B/C/剪下,放到ABC上,它们全等吗? 探究2:先画一个任意ABC,再画出A/B/C/,使AB= A/B/、AC= A/C/、B=B/(即保证两边和其中一边的对角对应相等)把画好的A/B/C/剪下,放到ABC上,它们全等吗? 学生活动:1学生自己动手,利用直尺、三角尺、量角器等工具画出ABC与A/B/C/,将A/B/C/剪下,与ABC重叠,比较结果 2作好图后,与同伴交流作图心得,讨论发现什么样的规律 教师活动: 教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程二 、探究操作结果展示: 对于探究1: 画一个A/B/C/,使A/B/=AB,A/C/=AC,A/=A 1画DA/E=A; 2在射线A/D上截取A/B/=AB在射线A/E上截取A/C/=AC;3连结B/C/ 将A/B/C/剪下,发现ABC与A/B/C/全等这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”) 小结 : 两边和它们的夹角对应角相等的两个三角形全等简称“边角边”和“SAS”如图,在ABC和DEF中, 对于探究2: 学生画出的图形各式各样,有的说全等,有的说不全等教师在此可引导学生总结画图方法: 1画DB/E=B; 2在射线B/D上截取B/A/=BA; 3以A/为圆心,以AC长为半径画弧,此时只要C90,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和ABC全等的 也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等所以它不能作为判定两三角形全等的条件 归纳总结: “两边及一内角”中的两种情况只有一种情况能判定三角形全等即: 两边及其夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”) 三、应用举例例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA连结BC并延长到E,使CE=CB连结DE,那么量出DE的长就是A、B的距离为什么? 师生共析如果能证明ABCDEC,就可以得出AB=DE 在ABC和DEC中,AC=DC、BC=EC要是再有1=2,那么ABC与DEC就全等了而1和2是对顶角,所以它们相等 证明:在ABC和DEC中 所以ABCDEC(SAS) 所以AB=DE1填空:(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?)四、练习1. 已知: ADBC,AD CB(图3)求证:ADCCBA2.已知:ABAC、ADAE、12(图4)求证:ABDACE五、课堂小结1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流行业调度员招聘模拟题集及答案
- 2025年建筑工程师考试冲刺题库及答案
- 【教案版】小学五班级下册 跳绳2
- 2025年人力资源管理师考试专业技能部分模拟题及答案
- 2025年营养师专业资格认证备考手册模拟题及答案全收录
- 2025年物资保管与盘点技能考核试题集
- 2025年法律行业律师招聘面试技巧及预测题集
- 2025年法律顾问面试指南与模拟题详解
- 2025年物资储备仓库IT招聘面试题预测与准备策略
- 2025年烈士纪念场所工作面试技巧与模拟题解答
- T/CA 105-2019手机壳套通用规范
- T/BMPA 0001-2023再生水供用双方协商价格行为指南
- 2024年高级养老护理员职业鉴定考试题库大全-下(多选、判断题)
- 数字经济中的市场结构变化-洞察阐释
- 《肾衰竭患者的护理》课件
- 食品合规管理中级 课件 上篇 第二章 食品合规标法义务及监管
- 2024-2030全球胃肠标记物胶囊行业调研及趋势分析报告
- 中国儿童肥胖诊断评估与管理专家共识解读 课件
- 老年人心理疏导与沟通培训
- SL631水利水电工程单元工程施工质量验收标准第3部分:地基处理与基础工程
- 2025时政试题及答案(100题)
评论
0/150
提交评论