




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
镶 嵌 教材:义务教育课程标准实验教科书人教2011课标版八年级(上册)第11章第3节 第三中学 吕继燕一、教学目标1、在实验与探究的学习活动中,使学生了解镶嵌的含义,认识到正三角形、正四边形和正六边形可以镶嵌平面,并能理解其中的道理。2、通过探索多边形覆盖平面的条件,发展学生的合情推理能力,在活动中使学生的观察、猜想、归纳及动手操作的能力得以提升。3、通过现实情境,让学生体会到数学的应用价值;经历对平面镶嵌条件的探索活动,提高数学学习的兴趣,建立良好的自信心。二、教学重点、难点:教学重点:镶嵌的含义及平面镶嵌条件的探究。教学难点:探究平面镶嵌的条件。三、课前准备:1、学生准备:每位同学分别准备好6-8个边长为5厘米长的正三角形、正四边形、正五边形、正六边形。搜集有关镶嵌图片。2、教师准备:生活中有关镶嵌图片。多媒体课件。四、教学过程:教学环节教学内容学生活动设计意图创设情境引出课题大千世界中蕴涵着大量的数学信息,观看屏幕上一组生活中的地砖图片(电脑演示) 教师提出问题:同学们仔细观察这些图片中都有那些图形?这些图形的共同特点是什么?你知道铺地砖时有什么要求? 教师点评,明确镶嵌含义:用地砖铺地,用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖。从数学角度看,这些工作就是用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题。 引出课题:镶嵌(第一课时) 学生欣赏图片。 学生观察后,在独立思考的基础上,分组交流,然后派代表发表见解。从普通、熟悉的现象中探求数学概念,易使学生产生亲切感,容易较快地进入角色。 通过一系列图片的展示下引出课题,使学生感受到生活中处处有数学,让学生亲身经历体会从具体情景中发现数学问题,进而寻求解决问题的方法的全过程。合作交流探索新知在前面学生了解了镶嵌的含义的基础上依次提出下列问题: 问题1:请你动手拼拼看能否用正三角形镶嵌成一个平面图案? 学生四人一组,由组长负责分工,开始实验。学生以小组合作的形式动手拼图。 给学生充分的时间在组内进行交流。 交流后展示每组的作品。 形成结论: 正三角形能镶嵌成一个平面图案。 正三角形是多边形中的特殊图形,因此,从正三角形入手,使学生会感到既熟悉,又轻松,为结论的得出奠定了基础。教学环节教学内容学生活动设计意图合作交流探索新知问题2:动手拼拼看,分别用正四边形和正六边形能否镶嵌成一个平面图案? 问题3:拼拼看,用正五边形能否镶嵌成一个平面图案? 教师将学生的这四种拼图过程利用多媒体演示给学生。 123 镶嵌条件的探究: 通过前面的实验,学生会急于知道:镶嵌成一个平面图案的条件到底是什么?教师顺势提出问题: 为什么正三角形、正四边形、正六边形能够能够镶嵌成一个平面图案,而正五边形却不能?同一种正多边形能够镶嵌成一个平面图案的条件是什么?给学生足够的时间,让他们充分活动后,在黑板上展示作品。 形成结论: 正三角形、正四边形和正六边形都能镶嵌成一个平面图案,正五边形不能。 学生观察教师的动态演示。 学生先独立思考2-3分钟。 以组为单位,研究解决问题的方法,从已有经验出发,试从不同角度寻求解决问题的方法。 教师深入到各小组,倾听学生们的讨论,鼓励学生大胆猜想,畅所欲言,对其中合理的回答给予肯定,对有困难的组要及时进行指导。学生亲自操作实验,再次感受镶嵌的含义,并会产生探究的欲望,学生会思考:为什么正三角形、正四边形、正六边形能够能够镶嵌成一个平面图案,而正五边形却不能?这些内容中蕴涵什么数学规律?从而引出探究的问题。这样的教学设计将促进学生主动探究、乐于探究。 在前面学生动手做的基础上,比较几种图形的共性,以学生的眼观、脑想、口说,用比较归纳的方法得出平面镶嵌的条件,并以正五边形为反例,强化镶嵌条件。 在合作中学习与人交流,集思广益,通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高语言表达能力。 教学环节教学内容学生活动设计意图合作交流探索新知教师利用多媒体展示。360o360o360o 在全班同学的互相补充和完善下,教师加以总结概括,得到: 结论:多边形能覆盖平面需要满足:拼接在同一个点的各个角的和恰好等于360。 推论:同一种正多边形能进行平面镶嵌的条件是:这个正多边形内角度数能整除360。 学生观看教师的动态演示。 与教师一起总结归纳镶嵌条件。 阅读结论,加深理解。通过镶嵌条件的归纳过程,使不同层次的学生在独立思考的前提下,在交流与合作过程中感受新知,建立新的知识体系,为学生的进一步探索提供可能。应用推广巩固提高合作交流教师提出问题: 你还能找出其它能作镶嵌的正多边形吗?说说你的理由。教师进行总结概括: 要使同一种正多边形能覆盖平面,必须要求这个正多边形内角度数能整除360。事实上除了正三角形、正四边形、正六边形外,其他正多边形都不可以镶嵌,并说明这一结论的证明有待于今后知识的学习来获得。1、 分别剪出几个形状、大小相同的任意三角形和任意四边形,拼拼看能否镶嵌成平面图案? 实验结论:仅用一种正多边形镶嵌(1)、任意三角形一定可以镶嵌。(2)、任意四边形一定可以镶嵌。(3)、正六边形可以镶嵌。 2、试用多种正多边形组合进行镶嵌设计。 实际问题:王大爷家买了一套新房,准备用两种形状的地板砖铺地,建材店有四种边长相同的正多边形地砖,分别为正三角形、正四边形、正六边形、正八边形,王大爷该选用那两种形状的地砖呢? 3、创造是人生命中的一个重要使命,充分发挥你的聪明才智和丰富的想象力,设计一个多姿多彩的地板图案吧。学生通过计算正七边形、正八边形、正九边形的内角后进行归纳,然后小组交流。学生以小组合作的形式动手拼图。 给学生充分的时间在组内进行交流。 交流后展示每组的作品。 形成结论:正三角形与正六边形镶嵌为例。 解:设在一个顶点周围有 x 个正三角形的角,y个正六边形的角,则有60x+ 120y = 360 化简得x +2 y = 6 x, y 为正整数解为 或学生分组讨论:正四边形和正六边形能否平面镶嵌?在不提供其他正多边形图片的情景下,让学生去思辨得出:不存在其它正多边形的镶嵌,旨在培养学生的抽象推理能力,使学生由感性认识上升到理性认识,从而使所学知识得到推广和应用,获得更具体更坚实的数学经验。培养学生形象思维,实际操作能力,探索新知。教学环节教学内容学生活动设计意图课堂小结体验收获 (1)学生谈谈通过本节课的学习有什么收获?还有哪些疑惑? 教师对个别学生富有个性的学习表现给予肯定和激励,使他们感受到成功的喜悦,并对有疑惑的地方进行补答。 (2)学生例举生活中见过的镶嵌实例。 (3)我经历了,我学会了,我感受了。 作业:请你用两种或两种以上的正多边形设计镶嵌图案,为本班设计班徽. 学生反思解决问题的过程并发表个人看法。 学生举出镶嵌实例,并展示课前搜集好的镶嵌图片。 观看教师展示的图片。通过回顾与反思,使学生养成反思学习过程的习惯,初步学会自我评价学习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度互联网医药电商业务总监劳动合同范本
- 2025年度汽车租赁业务挂靠管理及网络技术支持合同
- 培训营养知识的开场白课件
- 2025年度沉浸式VR教育培训内容版权保密合同
- 2025年度财产分割与子女教育保障协议:离婚后财产分配及子女培养责任协议
- 2025年跨境电商跨境电商物流运输及清关代理服务合同
- 2025年度电商平台VIP用户服务及全方位营销合作框架合同
- 2025年高标准绿色环保内墙抹灰及整体装修工程分包合同
- 口岸服务中心知识培训课件
- 2025年度甲级写字楼深度清洁及智能化设备升级服务合同
- 泛微协同办公应用平台解决方案
- (新)部编人教版高中历史中外历史纲要上册《第13课-从明朝建立到清军入关课件》讲解教学课件
- 医药行业专题报告:VCTE技术(福瑞股份子公司)专利概览
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 《现代汉语》课件修辞
- 某园区综合运营平台项目建议书
- 创造适合教育(2017年0613)
- 微创外科课件
- 易驱ED3000系列变频器说明书
- 农机行政处罚流程图
- GB∕T 6818-2019 工业用辛醇(2-乙基己醇)
评论
0/150
提交评论