【学海导航】高三数学第一轮总复习 8.5 直线与圆锥曲线的位置关系课件(2).ppt_第1页
【学海导航】高三数学第一轮总复习 8.5 直线与圆锥曲线的位置关系课件(2).ppt_第2页
【学海导航】高三数学第一轮总复习 8.5 直线与圆锥曲线的位置关系课件(2).ppt_第3页
【学海导航】高三数学第一轮总复习 8.5 直线与圆锥曲线的位置关系课件(2).ppt_第4页
【学海导航】高三数学第一轮总复习 8.5 直线与圆锥曲线的位置关系课件(2).ppt_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章 圆锥曲线方程 8 5直线与圆锥曲线的位置关系 第二课时 题型3圆锥曲线中的定值问题 1 如图 倾斜角为 的直线经过抛物线y2 8x的焦点f 且与抛物线交于a b两点 1 求抛物线的焦点f的坐标及准线l的方程 2 若 为锐角 作线段ab的垂直平分线m交x轴于点p 证明 fp fp cos2 为定值 并求此定值 解 1 设抛物线的标准方程为y2 2px 则2p 8 从而p 4 因此焦点f 0 的坐标为 2 0 又准线方程的一般式为x 从而所求准线l的方程为x 2 2 解法1 如图 作ac l bd l 垂足分别为c d 则由抛物线的定义知 fa ac fb bd 记a b的横坐标分别为xa xb 则解得 类似地 有 fb 4 fb cos 解得记直线m与ab的交点为e 则所以故为定值 解法2 设a xa ya b xb yb 直线ab的斜率为k tan 则直线ab的方程为y k x 2 将上式代入y2 8x 得k2x2 4 k2 2 x 4k2 0 故记直线m与ab的交点为e xe ye 则故直线m的方程为 令y 0 得p的横坐标故从而为定值 点评 探求有关定值问题 一是可以转化为求值问题来解 二是可以考虑特殊情况时的解 如图 已知点f 1 0 直线l x 1 p为平面上的动点 过p作直线l的垂线 垂足为q 且 1 求动点p的轨迹c的方程 2 过点f的直线交轨迹c于a b两点 交直线l于点m 已知试推断 1 2是否为定值 并说明理由 解 1 设点p x y 则q 1 y 由得 x 1 0 2 y x 1 y 2 y 化简y2 4x 所以动点p的轨迹c的方程为y2 4x 2 设直线ab的方程为x my 1 m 0 设a x1 y1 b x2 y2 又m 1 联立方程组消去x得y2 4my 4 则 4m 2 16 0 故由得整理得所以为定值 2 已知直线x 2y 2 0经过椭圆c a b 0 的左顶点a和上顶点d 椭圆c的右顶点为b 点s和椭圆c上位于x轴上方的动点 直线as bs与直线l x 分别交于m n两点 1 求椭圆的方程 2 求线段mn的长度的最小值 题型4圆锥曲线中的最值与范围问题 3 当线段mn的长度最小时 在椭圆c上是否存在这样的点t 使得 tsb的面积为 若存在 确定点t的个数 若不存在 说明理由 解 1 由已知得 椭圆c的左顶点为a 2 0 上顶点为d 0 1 所以a 2 b 1 故椭圆c的方程为 2 直线as的斜率k显然存在 且k 0 故可设直线as的方程为y k x 2 从而 由得 1 4k2 x2 16k2x 16k2 4 0 设s x1 y1 则得从而即又b 2 0 故直线bs的方程为由得所以故 又k 0 所以当且仅当即时等号成立 所以时 线段mn的长度取最小值 3 由 2 可知 当mn取最小值时 此时bs的方程为x y 2 0 所以要使椭圆c上存在点t 使得 tsb的面积等于 只须t到直线bs的距离等于 所以t在平行于bs且与bs距离等于的直线l 上 设直线l x y t 0 则由解得或 当时 由得5x2 12x 5 0 由于 44 0 故直线l 与椭圆c有两个不同的交点 当时 由得5x2 20 x 21 0 由于 20 0 故直线l 与椭圆c没有交点 综上所述 当线段mn的长度最小时 椭圆上仅存在两个不同的点t 使得 tsb的面积等于 点评 最值与范围问题一般涉及到参变量问题 应先把所求的问题转化为某参数的代数式 或函数式 然后利用求最值的方法求解 注意最值与特殊情况时的取值之间的联系 已知椭圆c 的离心率为 短轴一个端点到右焦点的距离为 1 求椭圆c的方程 2 设直线l与椭圆c交于a b两点 坐标原点o到直线l的距离为 求 aob面积的最大值 解 1 设椭圆的半焦距为c 依题意所以b 1 所以所求椭圆方程为 拓展练习 2 设a x1 y1 b x2 y2 当ab x轴时 ab 当ab与x轴不垂直时 设直线ab的方程为y kx m 由已知得把y kx m代入椭圆方程 整理得 3k2 1 x2 6kmx 3m2 3 0 所以 所以当k 0时 当且仅当即时等号成立 当k 0时 ab 3 综上所述 ab max 2 所以当 ab 最大时 aob面积取最大值 1 过椭圆 a b 0 的右焦点f 作斜率为1的直线l交椭圆于a b两点 o为原点 已知与向量a 3 1 共线 1 求椭圆的离心率 2 设m为椭圆上任意一点 且 r 证明 2 2为定值 解 1 设点f c 0 则直线l的方程为y x c 代入椭圆方程 整理得 a2 b2 x2 2a2cx a2c2 a2b2 0 设点a x1 y1 b x2 y2 则因为与a 3 1 共线 所以3 y1 y2 x1 x2 0 即3 x1 x2 2c x1 x2 0 所以于是解得a2 3b2 所以 2 因为a2 3b2 所以椭圆方程可化为x2 3y2 3b2 由题设 x1 x2 y1 y2 因为点m在椭圆上 所以 x1 x2 2 3 y1 y2 2 3b2 即 2 x12 3y12 2 x22 3y22 2 x1x2 3y1y2 3b2 因为a b两点在椭圆上 所以x12 3y12 3b2 x22 3y22 3b2 又x1x2 3y1y2 x1x2 3 x1 c x2 c 4x1x2 3 x1 x2 c 3c2 所以 2 3b2 2 3b2 3b2 即 2 2 1 为定值 2 学校科技小组在计算机上模拟航天器变轨返回实验 设计方案如右图 航天器运行 按顺时针方向 的轨迹方程为变轨 即航天器运行轨迹由椭圆变为抛物线 后返回的轨迹是以y轴为对称轴 m 0 为顶点的抛物线的实线部分 降落点为d 8 0 观测点a 4 0 b 6 0 同时跟踪航天器 1 求航天器变轨后的运行轨迹所在的曲线方程 2 试问 航天器在x轴上方时 观测点a b测得离航天器的距离分别为多少时 应向航天器发出变轨指令 解 1 设抛物线方程为易得所以曲线的方程为 2 设变轨点为c x y 根据题意可知 易得4y2 7y 36 0 解得y 4或y 不合题意 舍去 所以y 4 所以得x 6或x 6 不合题意 舍去 所以点c的坐标为 6 4 则 ac bc 4 所以 当观测点a b测得离航天器的距离分别为 时 应向航天器发出变轨指令 1 对于圆锥曲线中的定点 定值问题 一般利用方程思想转化为求值问题来解决 2 对于求曲线方程中参数的取值范围问题 需构造参数满足的不等式 通过求不等式 组 求得参数的取值范围 或建立关于参数的目标函数 转化为函数的值域 3 对于圆锥曲线的最值问题 解法常有两种 当题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论