



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数章节引言教案一、教学目标1.理解二次函数的概念;2.会求一些简单的实际问题中二次函数的解析式和它的定义域;3.在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义.二、教学重点及难点教学重点:对二次函数概念的理解教学难点:由实际问题确定函数解析式和确定自变量的取值范围.三、教学设计要点1.情境设计:通过思考回顾引入新课题;2.教学内容的处理:知识点与具体题目结合,使学生灵活运用知识;3.教学方法:启发式教学;四、教学用具粉笔、多媒体PPT五、教学过程(一) 复习提问我们学过了哪些函数?什么叫一次函数?(y=kx+b,其中k0)表达式中的自变量是什么?函数是什么?(函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量。)常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?说明: 复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解强调k0的条件,以备与二次函数中的a进行比较(二)由实际问题引入新课引言中的问题: 正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为问题1:多边形的对角线数d与边数n有什么关系?问题2: 某工厂一种产品今年的年产量是20件,计划明后两年增加产量.如果每年的增长率为x,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示? 说明:由以上三例,引导启发学生归纳出(1)函数解析式的一边均为整式(表明这种函数与一次函数有共同的特征)(2)自变量的最高次数是2(这与一次函数不同)本处设计了三个问题,学生容易分析其中的变量以及变量之间的关系,也不难列出函数解析式.通过归纳解析式特点,自然引出二次函数的定义.(三)学习新课1、二次函数的定义:形如y=ax2+bx+c(a0,a、b、c为常数)的函数叫做二次函数对二次函数概念的理解可从以下几方面入手:(1)强调“形如”,即由形来定义函数名称二次函数即y是关于x的二次多项式对定义中的“形如”的理解,与一次函数类似地,仍然要注意二次函数的自变量与函数不仅仅局限于只用x、y来表示. (2)在y=ax2bxc中自变量是x,它的取值范围是一切实数但在实际问题中,自变量的取值范围应是使实际问题有意义的值如例1中,x0()为什么二次函数定义中要求a0?(若a=0,ax2bx+c就不是关于x的二次多项式了)()b和c是否可以为零?由例1可知,b和c均可为零若b=0,则y=ax2c;若c=0,则y=ax2bx;若b=c=0,则y=ax2以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.2、概念巩固(1)下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c1)3y=x(x-1);2)y=3x(2-x)3x2;3)y=x42x21;4)y=2x23x+1(2)已知函数 y=(m2-9)x2-(m-3)x2,当m为何值时,这个函数是二次函数?当m为何值时,这个函数是一次函数?(3)圆柱的体积V的计算公式是V= ,其中 r是圆柱底面的半径,h是圆柱的高.1当h 是常量时,V是r 的什么函数?2当r 是常量时,V是h 的什么函数?说明通过练习,巩固加深对二次函数概念的理解.3、例题分析例1设圆柱的高h(cm)是常量,写出圆柱的体积V(cm3)与底面周长c(cm)之间的函数关系式例2用长为20米的篱笆,一面靠墙(墙长超过20米),围成一个长方形花圃,如图所示.设AB的长为x米,花圃的面积为y平方米,求y关于x的函数解析式及函数定义域.例3三角形的两条边长的和为9 cm,它们的夹角为 ,设其中一条边长为x(cm),三角形的面积为y(cm2),试写出y与x之间的函数解析式及定义域.对二次函数定义域的认识,要明确函数的表达式包括解析式和定义域.在具体问题中,有时只研究函数的解析式.若需要研究函数的定义域时,一般有下列两种可能性:如果未加说明,函数的定义域由解析式确定;如果函数有实际背景,那么写出函数解析式的同时必须给出定义域,这时既要考虑解析式的意义,又要考虑问题的实际意义.(四)巩固练习:一、基础练习1、二次函数的顶点是 ,对称轴是 2、抛物线与y轴的交点是 ,与x轴的交点是 3、一元二次方程的两根是,则二次函数与x轴的交点坐标是 4、已知抛物线的对称轴是直线是,则关于x的方程的两个根分别是 二、例题选讲例1、已知抛物线(1)求顶点坐标,对称轴(2)求出图像与x轴的交点(3)x取何值时,函数值大于0?x取何值时,函数值小于0?例2、已知二次函数图像顶点坐标是C,与y轴的交点是D(1)求这个二次函数的解析式(2)若这个二次函数图像与x轴的交点是A,B(A在B的左边)求四边形ABCD的面积例3、已知二次函数图像对称轴是直线是,图像与x轴的交点是,且求这个二次函数的解析式三、当堂检测1、抛物线与x轴只有一个交点,则a的值是 2、二次函数图像如图所示,则一元二次方程的两个实数根为 ,当 时, 3、顶点坐标是C,与y轴的交点是D(1)求这个二次函数的解析式 (2)若这个二次函数图像与x轴的交点是四、课后练习一、填空题1、函数是抛物线,则 .2、抛物线与轴交点为 ,与轴交点为 .3、抛物线可由抛物线向 平移 个单位得到4、抛物线在轴上截得的线段长度是 5、如果抛物线 的对称轴是x2,且开口方向与形状与抛物线 相同,又过原点,那么a ,b ,c .二、计算题(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西幼儿师范高等专科学校《影像雕塑》2024-2025学年第一学期期末试卷
- 厦门大学《银饰工艺品设计与制作》2024-2025学年第一学期期末试卷
- 湖北文理学院《艺术市场营销学》2024-2025学年第一学期期末试卷
- 河北能源职业技术学院《应用计量经济学》2024-2025学年第一学期期末试卷
- 2025年初级新媒体运营师面试题及答案
- 2025年高级客户经理招聘面试攻略与实战模拟题集萃
- 2025年初级电气工程师知识竞赛题及答案
- 2024年血站采血护士考试试题(附答案)
- 武汉音乐学院《日本商务礼仪》2024-2025学年第一学期期末试卷
- 2025年招聘面试模拟题烈士纪念设施保护单位的业务范畴
- 腰椎ODI评分完整版
- 5.Braden评估表及其评分指引
- GB/T 3920-2008纺织品色牢度试验耐摩擦色牢度
- 松下panasonic-视觉说明书pv200培训
- 金风科技-风电产业集团-供应商现场作业基础安全考试附答案
- 中考语文二轮专题复习:议论文阅读(共27张PPT)
- 建设工地每日消杀记录表
- 建筑施工应急处置明白卡
- 环境污染刑事案件司法解释学习课件
- 信息技术教学德育融合
- 护理品管圈QCC之提高手术物品清点规范执行率
评论
0/150
提交评论