




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章数列极限,2.1数列极限的概念,2.2收敛数列的性质,2.3数列极限存在的条件,2.1数列极限的概念,一、概念的引入,二、数列的定义,三、数列的极限,四、应用数列极限的定义证明数列极限的方法,一、概念的引入,引例,1如何用渐近的方法求圆的面积S?用圆内接正多边形的面积近似圆的面积S.,A1,A2,A3,A1表示圆内接正6边形面积,A2表示圆内接正12边形面积,A3表示圆内接正24边形面积,An表示圆内接正62n-1边形面积,.,显然n越大,An越接近于S.,因此,需要考虑当n时,An的变化趋势.,2、截丈问题:,“一尺之棰,日截其半,万世不竭”,二、数列的定义,例如,注意:,1.数列对应着数轴上一个点列.可看作一动点在数轴上依次取,2.数列是整标函数,三、数列的极限,问题:,当无限增大时,是否无限接近于某一确定的数值?如果是,如何确定?,问题:,“无限接近”意味着什么?如何用数学语言刻划它.,通过上面演示实验的观察:,如果数列没有极限,就说数列是发散的.,注意:,几何解释:,其中,注,定义1习惯上称为极限的N定义,它用两个动态指标和N刻画了极限的实质,用|xna|定量地刻画了xn与a之间的距离任意小,即任给0标志着“要多小”的要求,用nN表示n充分大。这个定义有三个要素:10,正数,20,正数N,30,不等式|xna|(nN),定义中的具有二重性:一是的任意性,二是的相对固定性。的二重性体现了xn逼近a时要经历一个无限的过程(这个无限过程通过的任意性来实现),但这个无限过程又要一步步地实现,而且每一步的变化都是有限的(这个有限的变化通过的相对固定性来实现)。,定义中的N是一个特定的项数,与给定的有关。重要的是它的存在性,它是在相对固定后才能确定的,且由|xna|来选定,一般说来,越小,N越大,但须注意,对于一个固定的,合乎定义要求的N不是唯一的。用定义验证xn以a为极限时,关键在于设法由给定的,求出一个相应的N,使当nN时,不等式|xna|成立。,在证明极限时,n,N之间的逻辑关系如下图所示,|xna|,nN,定义中的不等式|xna|(nN)是指下面一串不等式,都成立,,而对,则不要求它们一定成立,数列极限的几何意义,使得N项以后的所有项,都落在a点的邻域,因而在这个邻域之外至多能有数列中的有限个点,这就表明数列xn所对应的点列除了前面有限个点外都能凝聚在点a的任意小邻域内,同时也表明数列xn中的项到一定程度时变化就很微小,呈现出一种稳定的状态,这种稳定的状态就是人们所称谓的“收敛”。,nN,目的:,数列极限的演示,N,数列极限的演示,e越来越小,N越来越大!,数列极限的定义未给出求极限的方法.,例1,证,所以,注意:,利用定义验证数列极限,有时遇到的不等式|xna|不易考虑,往往采用把|xna|放大的方法。若能放大到较简单的式子,就较容易从一个比较简单的不等式去寻找项数指标N,放大的原则:放大后的式子较简单放大后的式子以0为极限,例2证明,证明,则当nN时,有,例3.证明分析,要使(为简化,限定n只要证.当nN时有由定义,.例4.证明(K为正实数)证:由于所以对任意0,取N=,当nN时,便有,例5,证,所以,说明:常数列的极限等于同一常数.,小结:,用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.,例6,证,例7,证,四:收敛的否定:,数列,发散,注:,改变或去掉数列的有限项,不影响数列的收敛性和极限.重排不改变数列敛散性,3数列极限的等价定义:,对,对任正整数,六无穷小数列:,定义极限为0的数列称为无穷小量(无穷小量是指一个极限概念,趋向常数0),命题1.,的极限为a,是无穷小量.,变量有极限,的充要条件为它可分解为,加一个无穷小量。,命题2,无穷小量加绝对值仍为无穷小量。,命题3,无穷小量与有界变量的积仍为无穷小量,命题4,定义数列,记作:,无穷大量和特别大量是否相同,不同的话,区别在哪里?2.在同一极限意义下无穷大量和无穷小量有什么关系?,思考题:,若对任意M0,总存在正整数N,,使nN时,,则称数列发散到无穷大,数列,称为无穷数列(无穷大量),1、唯一性2、有界性3、保号性4、保不等式性5、四则运算6、迫敛性(夹逼原理)7、子数列的收敛性,2.2收敛数列的性质,1、唯一性,定理2.2每个收敛的数列只有一个极限.,证,由定义,故收敛数列极限唯一.,2、有界性,例如,有界,无界,定理2.3收敛的数列必定有界.,证,由定义,注意:有界性是数列收敛的必要条件.,推论无界数列必定发散.,例1,证,由定义,区间长度为1.,不可能同时位于长度为1的区间内.,从而,3保序性,推论1(收敛数列的保号性)如果数列xn收敛于a,且a0(或a0)那么存在正整数N当nN时有xn0(或xn0),推论如果数列xn从某项起有xn0(或xn0)且数列xn收敛于a那么a0(或a0),思考:如将条件中的xnyn换成xnyn,那么以下结论是否成立?,证,4迫敛性,(夹逼原理),上两式同时成立,上述数列极限存在的准则可以推广到函数的极限,例1,解,由夹逼定理得,5绝对值收敛性:,(注意反之不成立,请举例).,6数列极限的四则运算法则,证明略。,例5求,例4求,解:分a=1,|a|1三种情况,解:(分子有理化),例3求,7、子数列的收敛性,注意:,例如,,证,证毕,定理2.8(数列收敛充要条件),收敛,的任何子列收敛,于同一极限.,例4,对于数列xn,证,此时有,此时有,总之:,恒有,推论,2.3数列极限存在的条件,一数列收敛的一个充分条件单调有界原理二数列收敛的充要条件Cauchy收敛准则,一单调有界原理,定义称为单调上升的,若,称为单调下降的,若,单调增加和单调减少数列统称为单调数列,定理1(单调有界定理)单调有界数列必有极限,定理1的几何解释,以单调增加数列为例数列的点只可能向右一个方向移动或者无限向右移动或者无限趋近于某一定点A而对有界数列只可能后者情况发生,证明,例1设,证明数列收敛.,证明:,即有界,而且显然是单调增加的数列,所以极限存在。,例2,证,(舍去),注意到对,有,有,例3,求,解由均值不等式,有,有下界;,及a,二数列收敛的充要条件Cauchy收敛准则,1Cauchy列:,如果数列,具有以下特性:,则称数列,是一个基本数列.(Cauchy列),定理的几何解释,柯西准则说明收敛数列各项的值越到后边,彼此越是接近,以至充分后面的任何两项之差的绝对值可小于预先给定的任意小正数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家教业务合作协议范本6篇
- 资源互换协议6篇
- 2024年镇江市高等专科学校招聘真题
- 2025年智能制造的工业机器人与自动化趋势
- 2025年智能音箱在智能家居中的角色分析
- 2025年海洋生物医药产业知识产权布局研究报告
- 2025福建省梧凤文旅集团有限公司招聘1名工作人员考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025内蒙古能源集团所属单位招聘30人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025年广东广州市中级人民法院公开招聘劳动合同制审判辅助人员46人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年甘肃省平凉市崆峒区殡仪馆招聘合同制工作人员考前自测高频考点模拟试题及答案详解(网校专用)
- 《水的组成说课课案》课件
- 理疗课件教学课件
- 起重作业十不吊、八严禁
- 医院消防安全知识培训课件
- 快件处理员(中级)职业技能鉴定考试题库(含答案)
- 《公共政策学(第二版)》 课件 杨宏山 第1-6章 导论、政策系统-政策执行
- 报关委托书格式模板
- 教学研究经验总结
- DZ∕T 0219-2006 滑坡防治工程设计与施工技术规范(正式版)
- 2024年江苏国信新丰海上风力发电有限公司招聘笔试冲刺题(带答案解析)
- GB/T 43795-2024磁性氧化物制成的磁心机械强度测试方法
评论
0/150
提交评论