




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.5两角和与差的正弦、余弦与正切公式,-2-,知识梳理,双基自测,2,1,自测点评,1.两角和与差的正弦、余弦和正切公式(1)sin()=.(2)cos()=.,sincoscossin,coscossinsin,-3-,知识梳理,双基自测,自测点评,2,1,2.二倍角公式sin2=;cos2=;,2sincos,cos2-sin2,2cos2-1,1-2sin2,2,-4-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”.(1)两角和与差的正弦、余弦公式中的角,是任意角.()(2)两角和与差的正切公式中的角,是任意角.()(3)cos80cos20-sin80sin20=cos(80-20)=cos,答案,-5-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-6-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-7-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,4.(2017全国,文13)函数f(x)=2cosx+sinx的最大值为.,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,5.(2017辽宁抚顺重点校一模)sin63cos18+cos63cos108=.,-9-,知识梳理,双基自测,自测点评,1.两角和与差的正弦公式概括为“正余、余正符号同”,两角和与差的余弦公式概括为“余余、正正符号异”.“符号同”指的是等号左边的“”与等号右边的“”一致.2.运用公式时要注意公式成立的条件.3.给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用或拆分后用诱导公式;(2)观察名,尽可能使得函数统一名称;(3)观察结构,利用公式,整体化简.,-10-,考点1,考点2,考点3,答案,解析,-11-,考点1,考点2,考点3,解题心得三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.,-12-,考点1,考点2,考点3,答案,解析,-13-,考点1,考点2,考点3,答案,-14-,考点1,考点2,考点3,-15-,考点1,考点2,考点3,-16-,考点1,考点2,考点3,解题心得运用两角和与差的三角函数公式时,不但要熟悉公式的直接应用,还要熟悉公式的逆用及变形,如tan+tan=tan(+)(1-tantan)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.,-17-,考点1,考点2,考点3,答案,-18-,考点1,考点2,考点3,-19-,考点1,考点2,考点3,-20-,考点1,考点2,考点3,答案,-21-,考点1,考点2,考点3,-22-,考点1,考点2,考点3,-23-,考点1,考点2,考点3,解题心得1.求角的三角函数值的一般思路是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应先着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.,-24-,考点1,考点2,考点3,答案,-25-,考点1,考点2,考点3,-26-,考点1,考点2,考点3,-27-,考点1,考点2,考点3,1.解决三角函数问题要重视三角函数的“三变”:“三变”是指“变角、变名、变式”.变角:对角的分拆要尽可能化成同角、余角、补角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,灵活使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”“遇到根式一般要升幂”等.,-28-,考点1,考点2,考点3,1.解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.2.运用三角函数公式时要注意公式成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省宁德市周宁县委政法委招聘3人模拟试卷及参考答案详解
- 2025北京市海淀区育鹰小学招聘5人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年河南省职工医院招聘护理人员60人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025年河北唐山滦州市森林草原消防专业队员招聘7人考前自测高频考点模拟试题带答案详解
- 2025年青岛市崂山区“崂选计划”第二批选聘(37名)模拟试卷带答案详解
- 安全培训教学提纲课件
- 河北省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【生物与化工大类】模拟练习
- 安全培训救火毯课件
- 2025广东“百万英才汇南粤”佛山市高明区选聘公办初中校长9人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年连云港市赣榆区事业单位公开招聘工作人员31人考前自测高频考点模拟试题及答案详解(全优)
- 《水利水电建设工程验收规程》-SL223-2008
- AIOT智能物联产业学院建设方案
- 行政管理专业教学实施细则
- 闭合性颅脑损伤重型个案护理
- 紫金矿业员工工作手册
- FZ-T 01158-2022 纺织品 织物刺痒感的测定 振动音频分析法
- 工程部造价管控手册
- 2024公安联考行测题库
- 民政信访业务培训课件
- 行政检查业务培训课件
- 汽车销售三方协议
评论
0/150
提交评论