【学海导航】江苏省2012届高中数学第一轮总复习 第2章第10讲 函数的图象课件 苏教版_第1页
【学海导航】江苏省2012届高中数学第一轮总复习 第2章第10讲 函数的图象课件 苏教版_第2页
【学海导航】江苏省2012届高中数学第一轮总复习 第2章第10讲 函数的图象课件 苏教版_第3页
【学海导航】江苏省2012届高中数学第一轮总复习 第2章第10讲 函数的图象课件 苏教版_第4页
【学海导航】江苏省2012届高中数学第一轮总复习 第2章第10讲 函数的图象课件 苏教版_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章,函数,函数的图象,第10讲,作图,【例1】作出下列函数的图象(1)y|x2|(x1);(2)y|log2x1|;(3)y2|x1|.,点评,作函数的图象,首先要对函数表达式进行化简,再根据自变量的范围描画函数的图象;也可以应用函数图象的变换规律描述函数的图象要熟练掌握基本初等函数的图象,【变式练习1】作出下列函数的图象(1)y|lgx|和ylg|x|;(2)ya|logax|(a0,且a1)【解析】(1)第一个函数的图象只需将ylgx在x轴下方部分的图象沿x轴翻折上去,并去掉x轴下方的图象,如下图(1);第二个函数的图象只需将ylgx的图象沿y轴翻折过去,同时保留y轴右边的图象,如下图(2),函数图象的变换过程,(3)分如下三个步骤求解:第一步,将函数yf(x1)的图象沿x轴的负方向(或向左)平移一个单位长度,得到函数yf(x)的图象;第二步,将函数yf(x)的图象以y轴为对称轴翻折180,得到函数yf(x)的图象;第三步,将函数yf(x)的图象沿x轴的正方向平移2个单位长度,得到yf(x2)f(x2)的图象,点评,图象变换有三种:平移变换、对称变换、伸缩变换,要掌握三种变换的基本规律本题(1)小题是伸缩变换(联系三角函数中的周期变换和振幅变换);(2)小题是对称变换,也可以理解为翻折变换,对称变换有轴对称变换和中心对称变换;(3)小题是平移变换,对自变量作平移必须注意,如将x向右平移1个单位长度,即(x1),而不是x1.,(2)分两步完成:第一步:将函数yf(2x1)的图象沿y轴翻折180,得到函数yf(2x1)的图象;第二步:将函数yf(12x)的图象沿x轴的正方向平移2个单位长度,得到函数yf(32x)的图象,识图,【例3】已知函数f(x)是定义在R上的奇函数,如右图是函数f(x)的图象令g(x)af(x)b,证明:当a1,2b0时,方程g(x)0有大于2的根,【解析】将f(x)的图象以x轴为对称轴翻折得到f(x)的图象,又2b0,所以a0,又因为f(x)ax33ax22axax3bx2cxd,所以b3a0,即实数b的取值范围是(,0),用图,点评,将不等式(含参数)转化为函数的关系,借助于函数图象来研究,是数学思想灵活运用的体现本题直接解不等式是困难的本题也可以作另外的解释,即,【变式练习4】已知关于x的方程x24|x|5m有四个不相等的实根,求实数m的取值范围,【解析】设y1x24|x|5,y2m,作函数y1x24|x|5,y2m的图象如右图,由图可知要使方程x24|x|5m有四个不相等实根,只需两图象有四个不同的交点,即1m5.,2.函数f(x)(xa)(xb)2(ab),、()是方程f(x)0的两个实数根,则、a、b的大小关系是_,a0)平移a个单位长度,就得到函数yf(xa)的图象;上下平移:把函数yf(x)的图象沿y轴方向向上(a0)平移a个单位长度,就得到函数yf(x)a的图象;把函数yf(x)的图象沿y轴方向向下(a0)平移a个单位长度,就得到函数yf(x)a的图象,(2)对称变换轴对称:设函数yf(x)的图象的对称轴是直线xa,则f(ax)f(ax)或f(2ax)f(x);当a0时,函数f(x)是偶函数;中心对称:设函数yf(x)的图象的对称中心为(a,0),则f(ax)f(ax)或f(2ax)f(x);当a0时,函数f(x)是奇函数;设对称中心是(a,b),则f(ax)2bf(ax)或f(x)2bf(2ax),图象的对称变换中,要注意两个函数图象的对称性问题:如函数yf(x)与函数yf(x)的图象关于x轴对称;函数yf(x)与函数yf(x)的图象关于原点对称;函数yf(x)与函数yf1(x)的图象关于直线yx对称等,图象对称变换中的翻折问题:如把函数yf(x)在x轴下方的图象沿x轴翻折到x轴上方,在x轴上方的保持不变,就得到函数y|f(x)|的图象;把函数yf(x)在y轴右边的图象沿y轴翻折到y轴左边,保留y轴右边的图象,就得到函数yf(|x|)的图象,2图象对称性的证明(1)轴对称图形:已知函数yf(x),其对称轴方程为xa,证明依据f(ax)f(ax)或f(2ax)f(x);当a0时,函数f(x)是偶函数(2)中心对称图形:已知函数yf(x),其对称中心为(a,0),证明依据f(ax)f(ax)或f(2ax)f(x);当a0时,函数f(x)是奇函数对称中心为(a,b),证明依据f(ax)2bf(ax)或f(2ax)2bf(x),3应用图象可以直观地解决很多问题,如解决与方程的解的个数有关的问题、解不等式等,应用图象解决问题的前提是正确地画出图象,而画图的步骤:求定义域;化简解析式;确定基本函数及图象变换的顺序;作出图象,1(2010无锡一中期中卷)将函数ylog2(2x1)的图象向右平移1个单位长度可以得到函数的解析式是_答案:ylog2(2x1)选题感悟:函数图象是最为直观形象表达函数关系的工具,而图象的变换是作函数图象的重要手段,也是历年高考考查的重点,选题感悟:这是一道识图题,从图中看出图象经过的点,通过解方程组求解,3(2010徐州市考前适应卷)已知f(x)是以2为周期的偶函数,当x0,1时,f(x)x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论