




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5.1平面几何中的向量方法教学目的:1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;3.让学生深刻理解向量在处理平面几何问题中的优越性. 教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程:一、复习引入:1. 向量平行与垂直的判定: 2. 平面内两点间的距离公式: 求模: 3. 夹角公式cosq =所代表的几何特征,所以,向量在几何中有非常重要的应用。二、讲解新课:例1. 已知AC为O的一条直径,ABC为圆周角.求证:ABC90o.证明:设 相应练习:证明勾股定理、菱形的对角线相互垂直。例2. 如图,AD,BE,CF是ABC的三条高.求证: AD,BE,CF相交于一点.例3. 平行四边形是表示向量加法与减法的几何模型.如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?思考1:如果不用向量方法,你能证明上述结论吗? 思考2:运用向量方法解决平面几何问题可以分哪几个步骤?运用向量方法解决平面几何问题可以分哪几个步骤?“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.例4如图, ABCD中,点E、F分别是AD、DC边的中点,BE、 BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?课堂小结用向量方法解决平面几何的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.课后作业1. 阅读教材P.109到P.111; 2. P108 B组第4、5题2.5.2向量在物理中的应用举例教学目的:1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会数学在现实生活中的作用. 教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.教学过程:一、引入:向量概念源于物理中的矢量,物理中的力、位移、速度等都是向量,功是向量的数量积,从而使得向量与物理学建立了有机的内在联系,物理中具有矢量意义的问题也可以转化为向量问题来解决.因此,在实际问题中,如何运用向量方法分析和解决物理问题,又是一个值得探讨的课题.二、讲解新课:例1. 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力. 你能从数学的角度解释这种形象吗?探究1:(1)q为何值时,|最小,最小值是多少?(2)| |能等于|吗?为什么?探究2:你能总结用向量解决物理问题的一般步骤吗?(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;(3)参数的获得:求出数学模型的有关解理论参数值;(4)问题的答案:回到问题的初始状态, 解决相关物理现象.例2. 如图,一条河的两岸平行,河的宽度d500 m,一艘船从A处出发到河对岸.已知船的速度|10 km/h,水流速度|2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?思考:1. “行驶最短航程”是什么意思?2. 怎样才能使航程最短?3P113 B组第2题 备用例题.(2020湖南卷19)(本小题满分13分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.解: (I)如图,AB=40,AC=10,由于,所以cos=由余弦定理得BC=所以船的行驶速度为(海里/小时).(II)解法一 如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是B(x1,y2), C(x1,y2),BC与x轴的交点为D.由题设有,x1=y1= AB=40,x2=ACcos,y2=ACsin所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.又点E(0,-55)到直线l的距离d=所以船会进入警戒水域.解法二: 如图所示,设直线AE与BC的延长线相交于点Q.在ABC中,由余弦定理得,=.从而在中,由正弦定理得,AQ=由于AE=5540=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP BC于点P,则EP为点E到直线BC的距离.在Rt中,PE=QEsin=所以船会进入警戒水域.三、课堂小结1. 向量解决物理问题的一般步骤:(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;(3)参数的获得:求出数学模型的有关解理论参数值;(4)问题的答案:回到问题的初始状
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能设备维护平台创新创业项目商业计划书
- 利用渔业废弃物生产有机肥料和饲料创新创业项目商业计划书
- 精准农业技术服务推广创新创业项目商业计划书
- 动物源天然色素提取创新创业项目商业计划书
- 功能性屠宰食品创新创业项目商业计划书
- 电商数据驱动决策支持创新创业项目商业计划书
- 国际水产养殖标准对接创新创业项目商业计划书
- 电信用户物联网设备接入服务创新创业项目商业计划书
- 2025年工业互联网平台SDN网络智能化升级与优化方案报告
- 现场培训课件
- 运输车辆司机安全培训考试专项测试题及答案
- 视频制作及推广合同
- 《神经网络与深度学习课程设计》课程教学大纲
- 焊工技师考试题(职业技能鉴定国家题库)
- 【零碳园区】绿色低碳工业园区自评价及第三方评价报告
- 手术室工作流程的优化和改进
- 大讲堂实施方案
- 战略管理知到智慧树章节测试课后答案2024年秋华南理工大学
- 壁挂炉购销合同-合同范本
- 陈腐垃圾施工方案
- 2024ESC心房颤动管理指南解读
评论
0/150
提交评论