



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学第十一章 概率复习教案1、随机事件事件的概率1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作3概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件6等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件7等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率8随机事件的概率、等可能事件的概率计算首先、对于每一个随机实验来说,可能出现的实验结果是有限的;其次、所有不同的实验结果的出现是等可能的一定要在等可能的前提下计算基本事件的个数只有在每一种可能出现的概率都相同的前提下,计算出的基本事件的个数才是正确的,才能用等可能事件的概率计算公式P(A)=m/n来进行计算9等可能性事件的概率公式及一般求解方法 求解等可能性事件A的概率一般遵循如下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m(3)应用等可能性事件概率公式P=计算 确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏二、互斥事件有一个发生的概率1 互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A、B互斥,即事件A、B不可能同时发生,这时P(AB)=)P(A+B)=P(A)+ P(B)一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥2对立事件的概念:事件和事件B必有一个发生的互斥事件 A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生这时P(AB)=, P(A+B)=P(A)+ P(B) 一般地,3对于互斥事件要抓住如下的特征进行理解:第一,互斥事件研究的是两个事件之间的关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是从试验的结果不能同时出现来确定的从集合角度来看,A、B两个事件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A的对立事件记作,从集合的角度来看,事件所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A=U,A=对立事件一定是互斥事件,但互斥事件不一定是对立事件4事件的和的意义:事件A、B的和记作A+B,表示事件A、B至少有一个发生 当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的, 因此当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥),且有P(A+)=P(A)+P()=1当计算事件A的概率P(A)比较困难时,有时计算它的对立事件的概率则要容易些,为此有P(A)=1P()5 要弄清,的区别 表示事件与同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B至少有一个发生的对立事件即,因此有,但=6互斥事件的概率的求法:如果事件彼此互斥,那么7互斥事件有一个发生的概率 求解这类问题的数学思想方法是:在给定的命题背景下,先判断事件之间是否互斥,并理解“和事件”的意义,计算出每个简单事件的概率,然后再利用互斥事件的概率计算公式进行加法运算特别要注意的是,若事件A与B不是互斥事件而是相互独立事件,那么在计算P(A+B)的值时绝对不可以使用P(A+B)=P(A)+P(B)这个公式,只能从对立事件的角度出发,运用P(A+B)=1-P()进行计算8分类讨论思想:分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想三、相互独立事件同时发生的概率1相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立2互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生3相互独立事件同时发生的概率:事件相互独立, 4相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的5独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验6独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率 表示事件A在n次独立重复试验中恰好发生了k次的概率令k=0得 在n次独立重复试验中,事件A没有发生的概率为Pn()=Cn0p0(1p)n =(1p)n 令k=n得 在n次独立重复试验中,事件A全部发生的概率为Pn(n)=Cnnpn(1p)0 =pn7相互独立事件同时发生的概率 在同一随机实验中,两事件互斥是指两个不可能同时发生的事件;两事件相互独立是指其中的一个事件发生与否对另一个事件的发生没有影响对这两个概念的区分能力足以体现分析问题和解决问题的能力,这正是高考考查的主要目的另外要理解“积事件”的意义,特别要注意:若事件A与B不是相互独立事件而是互斥事件,那么在计算P(AB)的值时绝对不可以使用P(AB)=P(A)P(B)这个公式,只能从对立事件的角度出发,运用P(AB)=1-P()进行计算8n次独立重复实验恰好有k次发生的概率要求掌握n次独立重复实验恰好有k次发生的概率计算公式,对这个公式,不能死记硬背,要真正理解它所表示的含义,特别要理解其中的的意义此公式是概率的加法公式的应用,也为处理离散型随机变量的概率分布问题做了很好的铺垫一般高考不单独考这个知识点,经常是和互斥事件有一个发生的概率或者相互独立事件同时发生的概率综合起来考查9常见错误归纳总结:概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率错解 掷两枚骰子出现的点数之和2,3,4,12共11种基本事件,所以概率为P=剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( ) A对立事件 B不可能事件 C互斥但不对立事件 D以上均不对错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C类型三 “互斥”与“独立”混同例3 甲投篮命中率为O8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B): 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同解: 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,则两人都恰好投中两次为事件AB,于是P(AB)=P(A)P(B)= 0.169类型四 “条件概率P(B / A)”与“积事件的概率P(AB)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术支持工程学习员合同
- 2025《基站建设合同施工》
- 2025借款抵押合同模板
- 2025综合布线维护合同模板
- 2025至2030中国全棉坯布行业供需趋势及投资风险报告
- 2025-2030牛仔裤行业市场发展现状及并购重组策略与投融资研究报告
- 2025-2030中国挂面市场深度调查研究报告
- 2025至2031年中国混凝土保护剂行业投资前景及策略咨询研究报告
- 2025至2031年中国汽车PVC仿皮备胎罩行业投资前景及策略咨询研究报告
- 2025至2031年中国槽筒式松式络筒机行业投资前景及策略咨询研究报告
- 四川省成都市锦江区2024届生物七年级第二学期期末综合测试试题含解析
- 化学品安全员工职业安全卫生培训课件
- 智慧电力能源管理服务平台建设方案 智慧电网能源管理服务平台建设方案
- 无创血糖仪行业营销策略方案
- 运用PDCA降低留置尿管相关尿路感染课件
- 麦克利兰素质能力模型
- 数据治理咨询项目投标文件技术方案
- DB51∕2672-2020 成都市锅炉大气污染物排放标准
- 零基预算的应用
- 肿瘤标志物的免疫检验(免疫学检验课件)
- 湖南省怀化市鹤城区2023年数学三下期末监测试题含解析
评论
0/150
提交评论