


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.1平面向量基本定理2.3.2平面向量正交分解及坐标表示【学习目标】1. 掌握平面向量基本定理;了解平面向量基本定理的意义;2. 掌握平面向量的正交分解及其坐标表示. 【学习过程】一、自主学习(一)知识链接:复习1:向量、是共线的两个向量,则、之间的关系可以表示为.复习2:给定平面内任意两个向量、,请同学们作出向量、.(二)自主探究:(预习教材P93P96)探究:平面向量基本定理问题1:复习2中,平面内的任一向量是否都可以用形如的向量表示呢?1.平面向量的基本定理:如果,是同一平面内两个的向量,是这一平面内的任一向量,那么有且只有一对实数使。其中,不共线的这两个向量叫做表示这一平面内所有向量的基底。问题2:如果两个向量不共线,则它们的位置关系我们怎么表示呢?2.两向量的夹角与垂直::我们规定:已知两个非零向量,作,则叫做向量与的夹角。如果则的取值范围是。当时,表示与同向;当时,表示与反向;当时,表示与垂直。记作:.在不共线的两个向量中,即两向量垂直是一种重要的情形,把一个向量分解为_,叫做把向量正交分解。问题3:平面直角坐标系中的每一个点都可以用一对有序实数(即它的坐标)表示. 对于直角坐标平面内的每一个向量,如何表示呢?3、向量的坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同于两个_作为基为基底。对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得_,这样,平面内的任一向量都可由_唯一确定,我们把有序数对_叫做向量的坐标,记作=_此式叫做向量的坐标表示,其中x叫做在x轴上的坐标,y叫做在y轴上的坐标。几个特殊向量的坐标表示二、合作探究学法引领:首先画图分析,然后寻找表示。1、已知梯形中,且,、分别是、的中点,设,。试用为基底表示、.2、已知是坐标原点,点在第一象限,求向量的坐标.三、交流展示1、已知点A时坐标为(2,3),点B的坐标为(6,5),O为原点,则=_,=_。2、已知向量的方向与x轴的正方向的夹角是30,且,则的坐标为_。3、已知两向量、不共线,若与共线,则实数=.4、在矩形中,与交于点,若,则等于多少?四、达标检测(A组必做,B组选做)A组:1. 设是平行四边形两对角线与的交点,下列向量组,其中可作为这个平行四边形所在平面表示所有向量的基底是()与与与与 A. B. C. D.2. 已知向量、不共线,实数、满足,则的值等于() A. B. C. D.3. 若、为平面上三点,为线段的中点,则() A. B. C. D.4.已知是同一平面内两个不共线的向量,且+,+,如果,三点共线,则的值为B组:1、已知是的边上的中线,若,则()()()()()2、已知点A(2,2) B(-2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合肥肥西县桃花初级中学教师招聘考试试题(含答案)
- 法院考试面试题及答案
- 湘西中考试题及答案
- 2025年灌南县教育系统招聘教师考试笔试试题(含答案)
- 校保卫处消防知识培训课件
- 急救技能知识模拟试题库及答案
- 饭店服务与管理试题库含答案
- 医院突发事件应急处理培训考核试题及答案
- 急救药品考试题(含答案)
- 放射医学技术(士、师)考试题库含答案
- 微课(比喻句)讲课教案课件
- 银行间本币市场业务简介
- 2023年厦门东海职业技术学院辅导员招聘考试笔试题库及答案解析
- 辽阳市出租汽车驾驶员从业资格区域科目考试题库(含答案)
- (完整版)剑桥通用五级PET考试练习题
- DB32- 4385-2022《锅炉大气污染物排放标准》
- 2022年西安陕鼓动力股份有限公司招聘笔试题库及答案解析
- 钢丝绳课件-图文
- 城市轨道交通安全管理课件(完整版)
- 健康照护教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 被执行人财产申报表
评论
0/150
提交评论