全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4课时 余弦定理(1)知识网络 三角形中的向量关系余弦定理学习要求 1 掌握余弦定理及其证明;2 体会向量的工具性;3 能初步运用余弦定理解斜三角形【课堂互动】自学评价1余弦定理:(1),.(2) 变形:, 2利用余弦定理,可以解决以下两类解斜三角形的问题:()已知三边,求三个角;()已知两边和它们的夹角,求第三边和其他两个角【精典范例】【例1】在中,(1)已知,求;(2)已知,求(精确到)【解】(1)由余弦定理,得,所以 (2)由余弦定理,得,所以,听课随笔点评: 利用余弦定理,可以解决以下两类解斜三角形的问题:()已知三边,求三个角;()已知两边和它们的夹角,求第三边和其他两个角【例2】两地之间隔着一个水塘,现选择另一点,测得,求两地之间的距离(精确到)【解】由余弦定理,得所以,答 两地之间的距离约为【例3】用余弦定理证明:在中,当为锐角时,;当为钝角时,【证】当为锐角时,由余弦定理,得,即 同理可证,当为钝角时,点评:余弦定理可以看做是勾股定理的推广追踪训练一在中,()已知,求a;()已知a,求略解:(1)a略解:(2)若三条线段的长为,则用这三条线段()能组成直角三角形能组成锐角三角形能组成钝角三角形不能组成三角形在中,已知,试求的大小略解:两游艇自某地同时出发,一艇以的速度向正北行驶,另一艇以的速度向北偏东的方向行驶,问:经过,两艇相距多远?略解:两艇相距4.71km【选修延伸】【例4】在ABC中,=,=,且,是方程的两根,。(1) 求角C的度数;(2) 求的长;(3)求ABC的面积。解:(1) (2)因为,是方程的两根,所以听课随笔 (3)【例5】在ABC中,角A、B、C所对的边分别为,证明:。证明:由余弦定理知:,则,整理得: ,又由正弦定理得:, , 追踪训练二1在ABC中,已知,B=,则 ( B )A 2 B 听课随笔 C D 2在ABC中,已知AB=5,AC=6,BC=,则A= ( A )A B C D 3在ABC中,若,C=,则此三角形有 一 解。提示:由余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河北单招财经商贸大类会计专业能力测试题库含答案
- 2026年内蒙古单招智能制造大类储能工程技术专业基础题库含答案
- 2026年广西单招基础薄弱生专用模拟卷含答案基础题占比80%
- 2026年上海单招文化素质统一考试经典题含答案2022-2025年含解析
- 学校幼儿园突发公共卫生事件应急处置机制
- 2025脓毒症相关试题及答案
- 18第十八章 虹桥丽宝广场机电预留预埋施工方案
- 钢结构厂房工程施工组织设计方案
- 张家港市公费师范生招聘真题2025
- 东莞理工学院招聘笔试真题2024
- DB11T 1259-2015 清洁生产评价指标体系 医疗机构
- 农村信用社农户贷款合同
- 广东省标准智慧灯杆技术规范
- QCT957-2023洗扫车技术规范
- DL-T5344-2018电力光纤通信工程验收规范
- 天津中考高频词汇英语300个
- 2024境外放款协议模板
- 新时代大学生劳动教育智慧树知到期末考试答案章节答案2024年江西中医药大学
- 水利工程质量评定知识
- 体检报告模板电子版
- 设备的可靠性管理课件
评论
0/150
提交评论