




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抛物线平面内与一个定点F和一条定直线l(Fl)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质标准方程y22px (p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y0x0焦点FFFF离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下第二部分 考点解析题型一抛物线的定义及应用例1已知抛物线y22x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|PF|的最小值,并求出取最小值时点P的坐标.变式练习 1.已知点P是抛物线y22x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为()A.B.3C.D.题型二抛物线的标准方程和几何性质例2抛物线的顶点在原点,对称轴为y轴,它与圆x2y29相交,公共弦MN的长为2,求该抛物线的方程,并写出它的焦点坐标与准线方程.变式练习2.设斜率为2的直线l过抛物线y2ax(a0)的焦点F,且和y轴交于点A.若OAF(O为坐标原点)的面积为4,则抛物线方程为()A.y24xB.y28xC.y24xD.y28x变式练习 3.已知点A(2,0),抛物线C:x24y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|MN|等于()A.2 B.12 C.1 D.13题型三抛物线焦点弦的性质例3设抛物线y22px(p0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BCx轴.证明:直线AC经过原点O.变式练习4.已知抛物线y22px(p0)的焦点为F,A(x1,y1)、B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2p2,x1x2;(2)为定值;(3)以AB为直径的圆与抛物线的准线相切.题型四直线与抛物线的位置关系例4已知抛物线C:ymx2(m0),焦点为F,直线2xy20交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标.(2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值.(3)是否存在实数m,使ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.变式练习5.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0?若存在,求出m的取值范围;若不存在,请说明理由.例5设抛物线C:y22px(p0)的焦点为F,直线l过F且与抛物线C交于M,N两点,已知当直线l与x轴垂直时,OMN的面积为2(O为坐标原点).(1)求抛物线C的方程;(2)是否存在直线l,使得以MN为对角线的正方形的第三个顶点恰好在y 轴上,若存在,求直线l的方程;若不存在,请说明理由. 方法与技巧小结1.认真区分四种形式的标准方程(1)区分yax2与y22px (p0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2mx或x2my(m0).2.抛物线的焦点弦:设过抛物线y22px (p0)的焦点的直线与抛物线交于A(x1,y1),B(x2,y2),则:(1)y1y2p2,x1x2;(2)若直线AB的倾斜角为,则|AB|;(3)若F为抛物线焦点,则有.第三部分 巩固练习A组专项基础训练一、选择题1.抛物线yx2的焦点坐标是()A.(0,)B.(,0) C.(0,)D.(,0)2.抛物线y24x的焦点到双曲线x21的渐近线的距离是()A.B.C.1D.3.已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x1B.x1 C.x2D.x24.已知抛物线y22px(p0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于()A.4B.4C.p2D.p25.如图,抛物线C1:y22px和圆C2:(x)2y2,其中p0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则的值为()A.p2B.C. D.二、填空题6.若点P到直线y1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是_.7.已知过抛物线y24x的焦点F的直线交该抛物线于A、B两点,|AF|2,则|BF|_.8.已知抛物线C:y22px(p0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若AM,则p_.三、解答题9.如图,已知抛物线y22px (p0)有一个内接直角三角形,直角顶点在原点,两直角边OA与OB的长分别为1和8,求抛物线的方程. 10.如图,抛物线E:y24x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2|AM|AN|,求圆C的半径.B组专项能力提升1.设F为抛物线y24x的焦点,A,B,C为该抛物线上三点,若0,则|等于()A.9B.6C.4D.32.已知抛物线C:y24x的焦点为F,准线为l,过抛物线C上的点A作准线l的垂线,垂足为M,若AMF与AOF(其中O为坐标原点)的面积之比为31,则点A的坐标为()A.(2,2)B.(2,2)C.(2,)D.(2,2)3.过抛物线y24x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|3,则AOB的面积为()A.B.C.D.24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第13课 上下结构(四)说课稿-2025-2026学年小学书法人美版六年级上册-人美版
- 湘教版七年级上册第二章第二节世界的海陆分布说课稿
- 2025合同终止协议(含补偿)
- 2025劳动合同法对退休年龄的规定
- 第三方担保借款合同范本7篇
- 2025地板代理合同范本
- 爱心义卖大行动教学设计-2023-2024学年小学综合实践活动三年级下册浙科技版
- 机械厂废渣检测管理细则
- 泰州事业单位笔试真题2025
- 人邮版(2010)说课稿-2023-2024学年中职中职专业课汽车制造与维修类66 装备制造大类
- 2025四川达州宣汉县国有资产管理服务中心县属国有企业招聘劳动合同职工26人笔试历年参考题库附带答案详解
- 2025年下半年杭州市上城区丁兰街道办事处招聘编外工作人员11人考试参考题库及答案解析
- 2025年合肥市广播电视台(文广集团)招聘12人考试参考题库及答案解析
- 2025年大队委竞选面试题库及答案
- 普通饮片车间共线生产风险评估报告
- 新教科版小学1-6年级科学需做实验目录
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 客诉客退产品处理流程
- 自来水厂操作规程手册范本
- 中职实用美术设计基础 2基础教学课件
- 体育与健康人教版四年级-足球-脚背正面运球教案
评论
0/150
提交评论