2020届高考数学复习 第43课时 第五章 平面向量-解斜三角形名师精品教案_第1页
2020届高考数学复习 第43课时 第五章 平面向量-解斜三角形名师精品教案_第2页
2020届高考数学复习 第43课时 第五章 平面向量-解斜三角形名师精品教案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第43课时:第五章 平面向量解斜三角形课题:解斜三角形一复习目标:1理解并掌握正弦定理、余弦定理、面积公式;2能正确运用正弦定理、余弦定理及关系式,解决三角形中的计算和证明问题二知识要点:1三角形中角的关系是:;2正弦定理是 ,余弦定理是 ;3三角形面积公式为 三课前预习:1在中,下列等式总能成立的是 ( ) 2已知是三边的长,若满足等式,则角的大小为 ( ) 3在中,则的面积为 4在中,已知,则解此三角形的结果有( )无解 一解 两解 一解或两解5在中,若且,则是 四例题分析:例1已知圆内接四边形的边长分别是,求四边形的面积例2 在中,且,试确定的形状例3在中,分别为角的对边,已知的面积为,且求的值例4圆的半径为,其内接的三边所对的角为,若,求面积的最大值 五课后作业:1在中,“”是“”的 ( )充分不必要条件 必要不充分条件充要条件 即不充分又不必要条件2三角形的两边之差为,夹角的余弦为,这个三角形的面积为,那么这两边分别 ( ) 3在中,如果,则的大小为( ) 或 或4已知的两边长分别为,其夹角的余弦为,则其外接圆半径为 5在中,满足,则三角形的形状是 6在中,则= 7在中,已知且,则这个三角形的边的长为 8.中,内角成等差数列,边长,求及面积9.中,角的对边,证明:10半圆的直径为2,为直径延长线上一点,为半圆上任意一点,以为边向半圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论