




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题09三角恒等变换与求值 考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.两角和与差的三角函数公式(1)两角和与差的三角函数公式会用向量的数量积推导出两角差的余弦公式;能利用两角差的余弦公式导出两角差的正弦、正切公式;能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)掌握2020江苏,5;2020江苏,15;2020课标,2;2020课标,14选择题填空题解答题2.二倍角公式掌握2020浙江,10;2020课标全国,9;2020四川,11选择题填空题解答题分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.考点内容解读要求高考示例常考题型预测热度三角函数的概念、同角三角函数的基本关系式和诱导公式了解任意角的概念和弧度制的概念;能进行弧度与角度的互化;理解任意角三角函数(正弦、余弦、正切)的定义;理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x;能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式理解2020北京,12;2020课标全国,5;2020广东,16;2020四川,13;2020大纲全国,3选择题填空题分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2020年高考全景展示1【2020年理数全国卷II】已知,则_【答案】点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.2【2020年浙江卷】已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P()()求sin(+)的值;()若角满足sin(+)=,求cos的值【答案】() , () 或 【解析】分析:()先根据三角函数定义得,再根据诱导公式得结果,()先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.详解:()由角的终边过点得,所以.()由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.3【2020年江苏卷】已知为锐角,(1)求的值;(2)求的值【答案】(1)(2)(2)因为为锐角,所以又因为,所以,因此因为,所以,因此,点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2020年高考全景展示1.【2020课标II,理14】函数()的最大值是 。【答案】1【考点】 三角变换,复合型二次函数的最值。【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。一般从:开口方向;对称轴位置;判别式;端点函数值符号四个方面分析。2.【2020北京,理12】在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,=_. 【答案】【解析】试题分析:因为和关于轴对称,所以,那么,这样.【考点】1.同角三角函数;2.诱导公式;3.两角差的余弦公式.【名师点睛】本题考查了角的对称的关系,以及诱导公式,常用的一些对称关系包含,与关于轴对称,则 ,若与关于 轴对称,则 ,若与关于原点对称,则 .3.【2020江苏,5】 若 则 .【答案】 【解析】故答案为【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.4.【2020浙江,18】(本题满分14分)已知函数f(x)=sin2xcos2x sin x cos x(xR)()求的值()求的最小正周期及单调递增区间【答案】()2;()最小正周期为,单调递增区间为【解析】试题分析:()由函数概念,分别计算可得;()化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间试题解析:()由,得()由与得所以的最小正周期是由正弦函数的性质得解得所以的单调递增区间是【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解2020年高考全景展示1.【2020高考新课标2理数】若,则( )(A) (B) (C) (D)【答案】D考点:三角恒等变换. 【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系2.【2020高考新课标1,理2】 =( )(A) (B) (C) (D)【答案】D【解析】原式= =,故选D.【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20与160之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.3.【2020高考重庆,理9】若,则()A、1 B、2 C、3 D、4【答案】C【解析】由已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音调的原理与应用:初中音乐基础知识教案
- 合同文档管理归档存档手册
- 初中数学竞赛题目分析与解题技巧教案
- 阿甘正传经典台词欣赏:英语情感表达教案
- 经典诗词朗读与朗诵技巧提升教学方案
- 早期认知学习理论课件
- 会议室多媒体设备租赁合同
- 罗马法的起源与发展:高中历史教学教案
- 2025年汽车维修工(汽车维修学徒考核)职业技能鉴定试卷
- 养殖业务合作及责任划分协议
- 小儿上呼吸道感染
- 2025年CCAA国家注册审核员考试(产品认证基础)历年参考题库含答案详解(5卷)
- 2025-2030中国骨科手术导航机器人医生培训体系与手术量增长关联报告
- 2025年燃气电厂笔试题库及答案
- 苏州工业园区外国语学校语文新初一均衡分班试卷
- 2025年道路运输两类人员安全员考试考核试题库答案
- 2025年学法减分试题及答案
- 《智能建造概论》高职完整全套教学课件
- 2025年教育综合理论知识试题及答案
- 2025-2026小学学年度第一学期教学工作安排表:启智育心绘蓝图筑梦前行谱新篇
- 妇科常规手术器械处理流程
评论
0/150
提交评论