已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第13课时 抽象函数1. 已知函数y = f (x)(xR,x0)对任意的非零实数,恒有f()=f()+f(),试判断f(x)的奇偶性。2 已知定义在-2,2上的偶函数,f (x)在区间0,2上单调递减,若f (1-m)0.(1)求;(2)求和;(3)判断函数的单调性,并证明.14.函数的定义域为R,并满足以下条件:对任意,有0;对任意,有;.(1)求的值;(2)求证: 在R上是单调减函数;(3)若且,求证:.15.已知函数的定义域为R,对任意实数都有,且当时,.(1)证明:;(2)证明: 在R上单调递减;(3)设A=,B=,若=,试确定的取值范围.16.已知函数是定义在R上的增函数,设F.(1)用函数单调性的定义证明:是R上的增函数;(2)证明:函数=的图象关于点(成中心对称图形.17.已知函数是定义域为R的奇函数,且它的图象关于直线对称.(1)求的值;(2)证明: 函数是周期函数;(3)若求当时,函数的解析式,并画出满足条件的函数至少一个周期的图象.18函数对于x0有意义,且满足条件减函数。(1)证明:;(2)若成立,求x的取值范围。19设函数在上满足,且在闭区间0,7上,只有(1)试判断函数的奇偶性;(2)试求方程=0在闭区间-2020,2020上的根的个数,并证明你的结论20. 已知函数f(x)对任意实数x,y,均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1)2,求f(x)在区间2,1上的值域。21. 已知函数f(x)对任意,满足条件f(x)f(y)2 + f(xy),且当x0时,f(x)2,f(3)5,求不等式的解。 答案:1. 解:令= -1,=x,得f (-x)= f (-1)+ f (x) 为了求f (-1)的值,令=1,=-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令=-1得f(1)=f(-1)+f(-1)=2f(-1) f(-1)=0代入式得f(-x)=f(x),可得f(x)是一个偶函数。2. 分析:根据函数的定义域,-m,m-2,2,但是1- m和m分别在-2,0和0,2的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x)有性质f(-x)= f (x)=f ( |x| ),就可避免一场大规模讨论。解:f (x)是偶函数, f (1-m)f(m) 可得,f(x)在0,2上是单调递减的,于是 ,即 化简得-1m0, 令得,(2)任取任取,则令,故 函数的定义域为R,并满足以下条件:对任意,有0;对任意,有;函数是R上的单调减函数.(3) 由(1)(2)知,而15. (1)证明:令,则当时,故,当时,当时,则(2)证明: 任取,则,0,故0是R上的增函数;(2)设为函数=的图象上任一点,则点关于点(的对称点为N(),则,故把代入F得, =-函数=的图象关于点(成中心对称图形.17.(1)解:为R上的奇函数, 对任意都有,令则=0(2)证明: 为R上的奇函数, 对任意都有,的图象关于直线对称, 对任意都有, 用代得,即是周期函数,4是其周期.(3)当时,当时,当时,图象如下: y -2 -1 0 1 2 3 4 5 6 x18.(1)证明:令,则,故(2),令,则, 成立的x的取值范围是。19解:(1)由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数,由,从而知函数的周期为又,故函数是非奇非偶函数;(2)由又故f(x)在0,10和-10,0上均有有两个解,从而可知函数在0,2020上有402个解,在-2020.0上有400个解,所以函数在-2020,2020上有802个解.20. 解:设,当,即,f(x)为增函数。在条件中,令yx,则,再令xy0,则f(0)2 f(0), f(0)0,故f(x)f(x),f(x)为奇函数,f(1)f(1)2,又f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南通瑞海集团招聘工作人员及递交适岗评价材料笔试历年常考点试题专练附带答案详解试卷2套
- 2025春中化集团招聘模组开发工程师(江苏扬州)笔试历年备考题库附带答案详解试卷2套
- 2025广西北投能源投资集团有限公司招聘13人笔试历年典型考点题库附带答案详解试卷2套
- 2025广东东莞市中堂实业控股集团有限公司招聘6人笔试历年典型考点题库附带答案详解试卷2套
- 2025年福建漳州南靖县属国有企业招聘16人笔试历年典型考点题库附带答案详解试卷2套
- 2025年吉林省高速公路集团有限公司延吉分公司招聘25人笔试历年备考题库附带答案详解试卷2套
- 利用AR提高护理人员紧急情况应对能力的实证研究-洞察及研究
- 建筑项目施工图审核与修正方案
- 2024年东山海发集团下属公司招聘真题
- 2025年工业互联网平台数据要素流通机制可行性研究报告
- 2025年度安全生产工作述职报告范文
- 宁夏煤业面试题及答案
- 新课标2025版物理培训
- 2025年北京市高职单独招生文化课统一考试(英语)
- 2025首都航空招飞面试题及答案
- 学校体育发展五年规划(2025.9-2030.9)
- 2025年陇南市人民检察院司法警察辅助人员招聘考试笔试试题
- 2025北京市顺义区卫生健康委员会所属事业单位招聘额度人员14人笔试考试参考题库及答案解析
- 2025年全国共青团“新团员入团”应知应会知识考试试卷及完整答案详解【必刷】
- 思想道德与法治(2023年版)电子版教材第一章 领悟人生真谛 把握人生方向
- 卖身合同范例
评论
0/150
提交评论