




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
指数函数(三)教学目标:使学生了解函数图象的变换;能运用指数函数的图象和性质解决一些简单问题,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。教学重点:函数图象的变换;指数函数性质的运用教学难点:函数图象的变换;指数函数性质的运用教学过程:教学目标(一)教学知识点1.指数形式的复合函数.2.指数形式复合函数的单调性.3.指数形式复合函数的奇偶性.(二)能力训练要求1.掌握指数形式的复合函数的单调性的证明方法.2.掌握指数形式的复合函数的奇偶性的证明方法.3.培养学生的数学应用意识.(三)德育渗透目标1.认识从特殊到一般的研究方法.2.用联系的观点看问题.3.了解数学在生产实际中的应用.教学重点1.函数单调性的证明通法. 2.函数奇偶性的证明通法.教学难点指数函数的性质应用.教学方法启发式启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步的判断.在运用证明函数奇偶性的基本步骤对指数形式的复合函数的奇偶性证明时,应提醒学生考查函数的定义域是否关于原点对称,以培养学生的定义域意识,并引导学生得指数形式的复合函数判断奇偶性的常用等价形式,以帮助学生形成系统的知识结构.教具准备幻灯片三张第一张:判断及证明函数单调性的基本步骤、判断及证明函数奇偶性的基本步骤(记作2.6.3 A)第二张:例5证明过程(记作2.6.3 B)第三张:例6证明过程(记作2.6.3 C)教学过程.复习回顾师上一节,我们一起学习了指数函数的性质应用,这一节,我们学习指数形式的复合函数的单调性、奇偶性的证明方法.首先,大家来回顾一下第二章第一单元所学的证明函数单调性、奇偶性的基本步骤.生判断及证明函数单调性的基本步骤:假设作差变形判断.生判断及证明函数奇偶性的基本步骤:(1)考查函数定义域是否关于原点对称;(2)比较f(x)与f(x)或者f(x)的关系; (3)根据函数奇偶性定义得出结论.(给出幻灯片2.6.3 A,老师结合幻灯片内容加以强调说明)师在函数单调性的证明过程中,“变形”是一关键步骤,变形的目的是为了易于判断,判断有两层含义:一是对差式正负的判断;二是对增减函数定义的判断.另外,在函数奇偶性的判断及证明过程中,定义域的考查容易被大家忽略,而函数的定义域关于原点对称是函数具有奇偶性的必要条件,大家应予以重视.下面,我们通过例题来一起熟悉并掌握证明函数单调性,奇偶性的方法.讲授新课例5当a1时,证明函数f(x)=是奇函数.分析:此题证明的结构仍是函数奇偶性的证明,但在证明过程中的恒等变形用到推广的实数范围内的指数幂运算性质.同时,应注意首先考查函数的定义域.证明:由ax10 得x0故函数定义域xx0关于原点对称.又f(x)=f(x)=f(x)=f(x)所以函数f(x)=是奇函数.师对于f(x)与f(x)关系的判断,也可采用如下证法:1即f(x)f(x)评述:对于指数形式的复合函数的奇偶性的证明,常利用如下的变形等价形式:f(x)f(x)1(f(x)0),f(x)f(x)1(f(x)0).这种变形的等价形式主要是便于实数指数幂运算性质,要求学生在解决相关类型题时,予以尝试和体会.例6设a是实数,f(x)=a (xR)(1)试证明对于任意a,f(x)为增函数;(2)试确定a值,使f(x)为奇函数.分析:此题的形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明.还应要求学生注意不同题型的解答方法.(1)证明:设x1,x2R,且x1x2则f(x1)f(x2)=(a=由于指数函数y=2x在R上是增函数,且x1x2,所以即0又由2x0得+10,+10所以f(x1)f(x2)0即f(x1)f(x2)因为此结论与a取值无关,所以对于a取任意实数,f(x)为增函数.评述:上述证明过程中,对差式正负判断时,利用了指数函数的值域及单调性.(2)解:若f(x)为奇函数,则f(x)=f(x)即a变形得: 2a=解得a=1所以当a=1时,f(x)为奇函数.评述:此题并非直接确定a值,而是由已知条件逐步推导a值.应要求学生适应这种探索性题型.课堂练习已知函数f(x)为偶函数,当x(0,+)时,f(x)=2x+1,求当x(,0)时,f(x)的解析式.解:设x(,0),则x(0,),由x(0,)时,f(x)2x1得f(x)2-x1又由函数f(x)为偶函数得f(x)f(x)f(x)2-x1.即当x(,0)时,f(x)2-x1.课时小结师通过本节学习,要求大家进一步熟悉指数函数的性质应用,并掌握函数单调性.奇偶性证明的通法.课后作业(一)1.课本P75习题2.64.求证:(1)f(x)(a0,a1)是奇函数;(2)f(x)(a0,a1)是偶函数.证明:(1)f(x)f(x)即f(x)f(x),故f(x)是奇函数.(2)f(x)f(x)即f(x)f(x),故f(x)是偶函数.2.已知函数f(x)=,(1)判断函数f(x)的奇偶性;(2)求证函数f(x)在(,+)上是增函数.(1)解:首先考查函数定义域R,故定义域关于原点对称.又f(x)f(x)即f(x)f(x)f(x)是奇函数.(2)证明:设x1x2,则f(x1)f(x2)x1x2 0.又210,100f(x1)f(x2)0即f(x1)f(x2)f(x)在(,)上是增函数.(二)1.预习内容:课本P762.预习提纲:(1)对数与指数有何联系?(2)对数式与指数式如何互化?板书设计2.6.3 指数函数的性质应用(二)1.单调性证明通法:比较自变量大小与相应函数值大小是具有一致性,还是相反性.2.奇偶性证明通法考查定义域比较f(x),f(x),f(x)三者的关系3.例54.例65.学生练习.复习引入指数函数yax(a0且a1)的定义、图象、性质:定义域、值域、单调性、奇偶性.讲授新课例1用计算器或计算机作出的图象,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y2x的图象的关系y2x+1与y2x+2. y2x1与y2x 2活动设计:学生用计算器或计算机作出的图象,观察分析讨论,教师引导、整理解:作出图象,显示出函数数据表 比较函数y2x+1、y2x+2与y2x的关系:从上表可以看出,y23+1与y22相等,y22+1与y21相等,y22+1与y23相等,. 由此可知,将指数函数y2x的图象向左平行移动1个单位长度,就得到函数y2x+1的图象,将指数函数y2x的图象向左平行移动2个单位长度,就得到函数y2x+2的图象。作出图象,显示出函数数据表比较函数y2x1、y2x2与y2x的关系:从上表可以看出,y212与y23相等,y202与y22相等,y232与y21相等,. 由此可知,将指数函数y2x的图象向右平行移动1个单位长度,就得到函数y2x1的图象,将指数函数y2x的图象向右平行移动2个单位长度,就得到函数y2x2的图象。 小结: y2xm与y2x的关系当m0时,将指数函数y2x的图象向右平行移动m个单位长度,就得到函数y2xm的图象,当m0时,向左平移a个单位;a0时,向上平移a个单位;a0时,向下平移|a|个单位.y=f(-x)y=f(-x)与y=f(x)的图象关于y轴对称.y=-f(x)y=-f(x)与y=f(x)的图象关于x轴对称.y=-f(-x)y=-f(-x)与y=f(x)的图象关于原点轴对称.y=f(|x|)y=f(|x|)是偶函数,图象关于y轴对称,x0时函数即y=f(x),所以x0时的图象与x0时y=f(x)的图象关于y轴对称.y=|f(x)|,y=|f(x)|的图象是y=f(x)0与y=f(x)0图象的组合.y=f-1(x)y=f-1(x)与y=f(x)的图象关于直线y=x对称.以上是在高一阶段我们看到的几种函数图象的变换,但随着知识的增加,还会有许多较复杂的变换,以后再作研究.例3探讨函数yax和yax (a0且a1)的图象的关系,并证明活动设计:学生用计算器作出函数图像,观察分析讨论,教师引导、整理 证:设P1(x1, y 1)是函数yax (a0且a1)的图象上任意一点 则y1a 而P1(x1, y 1)关于y轴的对称点Q是(-x1, y 1) y1aa() 即Q在函数yax的图象上 由于P1是任意取的 所以yax上任一点关于y轴的对称点都在yax的图象上 同理可证:yax 图象上任意一点也一定在函数yax的图象上 函数yax和yax的图象关于y轴对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考点解析-冀教版七年级下册期末试题及参考答案详解(新)
- 大培训、大学习、大考试安全应急考试题库及答案
- 2025年快消品包装行业可持续设计理念研究报告
- 2025年物联网设备安全漏洞防护策略与解决方案深度剖析报告
- 2025至2030年中国个人护理用品连锁行业市场运营趋势分析及投资潜力研究报告
- 2025至2030年中国短保面包行业市场供需格局及投资规划建议报告
- 2025年度房地产销售代理与物业管理合作协议
- 2025版房地产投资担保协议下载模板
- 2025版版汽车零部件采购合同模板
- 2025年度环保产业保证担保合同模板
- 主变压器安装施工方案完整版本
- 高中音乐-《国歌里的故事》教学课件设计
- 《Photoshop图像处理》课件-第一讲 认识PS
- 深度学习教学改进丛书 深度学习:走向核心素养(理论普及读本)
- 大众Polo 2014款说明书
- 人民医院整形外科临床技术操作规范2023版
- DB65T 3993-2017旱寒区冬油菜复播油葵栽培技术规程
- 脚手架搭拆施工方案
- 出境竹木草制品自检自控计划书(2021年报海关)
- 汽车风窗刮水器机构设计
- 重庆某广场高边坡喷锚支护施工方案(脚手架设计)
评论
0/150
提交评论