




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市2018-2019学年高一数学下学期期中试题(含解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.( )a. b. c. d. 【答案】c【解析】【分析】可以把角化成,利用诱导公式化成以内的特殊角,从而得到结果.【详解】由三角函数诱导公式可知:故选c.【点睛】诱导公式是三角中最基本的运算,可以把任意大小的角化成到范围内进行求解.2.已知向量,且,则( )a. b. c. 1d. 【答案】b【解析】【分析】由向量平行的性质可以得到,从而得到.【详解】由向量,且,可由向量平行的性质得到.故答案选b【点睛】若向量,且,则可以推出.3.已知向量,若,则角( )a. b. c. d. 【答案】d【解析】【分析】由向量点乘的公式带入,可以得到,再由求出角的精确数值.【详解】由,及可得,化简得或又,则为唯一解,答案选d.【点睛】1、若向量,则向量点乘;2、解三角方程时,若,则或;3、解三角方程时尤其要注意角度的取值范围.4.函数的图象的一个对称中心是( )a. b. c. d. 【答案】a【解析】【分析】由正切函数对称中心可以得到,从而解出满足条件的对称中心.【详解】由正切函数的对称中心可以推出对称中心的横坐标满足,带入四个选项中可知,当时,.故是图像的一个对称中心,选a.【点睛】正切函数对称中心为,正弦函数的对称中心为,余弦函数的对称中心为,解关于对称中心的题目时需要把整个三角函数看成一个整体,从整体性入手求出具体范围.5.已知,则( )a. b. 2c. d. -2【答案】b【解析】由题,两边平方得,两边同时除以并化简得,解得故本题正确答案为6.已知,则,的大小关系为( )a. b. c. d. 【答案】c【解析】【分析】可以看出,直接排除a、b,再比较,从而选出正确答案.【详解】可以看出是一个锐角,故;又,故;又,而,故;从而得到,故选c.【点睛】比较大小时常用的方法有单调性法,图像法,中间值法;中间值一般选择0、1、-1等常见数值.7.已知函数的一条对称轴为直线,一个对称中心为点,则有( )a. 最小值2b. 最大值2c. 最小值1d. 最大值1【答案】a【解析】【分析】将代入余弦函数对称轴方程,可以算出关于的一个方程,再将代入余弦函数的对称中心方程,可求出另一个关于的一个方程,综合两个等式可以选出最终答案.【详解】由满足余弦函数对称轴方程可知,再由满足对称中心方程可知,综合可知的最小值为2,故选a.【点睛】正弦函数的对称轴方程满足,对称中心满足;余弦函数的对称轴方程满足,对称中心满足;解题时一定要注意这个条件,缩小范围.8.如图,在中,若,则( )a. b. c. d. 【答案】d【解析】 =,=.故答案为:d。9.设函数的最小正周期是,将其图象向左平移后,得到的图象如图所示,则函数的单增区间是( )a. b. c. d. 【答案】a【解析】由已知图象知,的最小正周期是所以解得.由得到,单增区间是或:因为所以将的图象向左平移后,所对应的解析式为.由图象知,所以.由得到,单增区间是点晴:本题考查的是三角函数的图像和性质.已知函数的图象求解析式;(1);(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.确定解析式后,再根据可得单增区间是.10.在abc中,a=120,ab=3,ac=4,若=2,=+(r),且=,则的值为()a. 1b. c. d. 【答案】c【解析】【分析】结合已知,用,表示,然后结合向量数量积的运算性质即可求解【详解】解:2,(r),a120,ab3,ac4,6,()(),则2,故选:c【点睛】本题主要考查了向量的基本定理及向量数量积的运算性质的简单应用,属于基础试题11.已知函数,在的大致图象如图所示,则可取( )a. b. c. d. 【答案】b【解析】分析:从图像可以看出为偶函数,结合形式可判断出为偶函数,故得的值,最后通过得到的值详解:为上的偶函数,而为上的偶函数,故为上的偶函数,所以因,故,因,故,所以,因,故,所以综上,故选b 点睛:本题为图像题,考察我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围12.的外接圆的圆心为,垂心为,则的取值为( )a. -1b. 1c. -2d. 2【答案】b【解析】【分析】由于是外接圆圆心,是垂心,固有,;将等式左右两边同时乘以,化简可以求出.【详解】将等式左右两边同时乘以向量,可以得到,继续化简可得,又,故选b.【点睛】若是的外心,则有:若是的垂心,则有:.二、填空题:(本大题共4小题,每小题5分,共20分)13.已知向量,的夹角为,则_.【答案】【解析】【分析】展开后代入及即可算出答案.【详解】由题意可知,代入模长及角度可以算出,故答案为.【点睛】求向量四则运算后的模长可利用平方后开根号的方式得到;1、;2、.14.已知向量,其中为常数,如果向量,分别与向量所成的角相等,则_.【答案】2【解析】【分析】由向量,分别与向量所成的角相等可得,利用向量夹角的计算公式,列出等式,解出最后的结果.【详解】向量,分别与向量所成的角相等,可得,即 ,代入,得,故答案为.【点睛】向量的夹角相等,可以利用点乘进行求解;若向量,的夹角为,则.15.的最小值为_.【答案】8【解析】【分析】利用先把原式进行化简,通分后换元,通过自变量的范围解出最后值域的范围.【详解】原式可化:,设则,原式可化为,故最小值为8,此时.【点睛】1、求解三角等式时,要熟练应用三角恒等变换,尤其是“1”的代换;2、换元时要注意写出未知数的取值范围;3、利用基本不等式解题时要注意取等条件是否能够取到.16.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_.【答案】【解析】【分析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即。则,解得,故答案为:【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.三、解答题:(本大题共6小题,满分70分,写出必要文字说明和演算步骤)17.(1)已知,求.(2)若,求的值.【答案】(1) (2)1【解析】【分析】(1)先利用诱导公式把等式进行化简,代入进行求解;(2)可以把分母看成,再利用弦化切进行求解.【详解】(1)用诱导公式化简等式可得,代入可得.故答案为;(2)原式可化为:把代入得故答案为1.【点睛】遇到复杂的三角方程时,首先应该考虑使用诱导公式进行化简,再将数据代入,求出结果;切化弦和弦化切都是我们常用的运算方法,在计算时要灵活应用三角函数的隐藏条件,如等.18.已知向量,满足,且,的夹角为.(1)求;(2)若,求的值.【答案】(1)-12;(2)12.【解析】【分析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可.【详解】(1)由题意得,(2),【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.19.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)将函数的图象向右平移个单位后,再将所得图象的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象关于轴对称,求的最小值.【答案】(1),单调递减区间为 (2) 【解析】【分析】(1)把看成一个整体,利用余弦函数的单调性,解出单调区间;(2)利用三角函数图像变换的性质,写出变换后的三角函数解析式,再利用余弦函数的对称轴方程,得到答案.【详解】(1)由,由余弦函数的单调递减区间可知余弦函数的单调递减区间为:,;(2)对称轴为又满足对称轴方程,的最小值为.【点睛】1、正弦函数与余弦函数的周期为,正切函数周期为;2、函数平移记住“左加右减、上加下减”,翻折变换中,轴扩大倍,系数变为,轴扩大倍,则系数变为;3、求解函数的单调性、对称轴及对称中心时都要关注三角函数的整体性进行求解.20.已知函数的图象的一部分如图所示.(1)求的解析式;(2)当时,求函数的值域.【答案】(1) (2) 【解析】【分析】(1)从图像可以看出,此函数的最大和最小值分别为2和-2,则,算出周期可以解出的值,最后代入最高点,依据的取值范围求出结果.(2)通过的取值范围,求出的取值范围,从图像中解出值域.【详解】(1)由图可知,又可得,代入最高点,可知,又,故.(2)由可得,故正弦函数.【点睛】1、从图像求解三角函数解析式时首先可以由最大值剪最小值除以2求出a的值;2、求解时一般先由图像算出周期后得到;3、求解时要注意只能够代入最高或最低值所在的点,否则其它点代入得到的值并不唯一.21.在平面直角坐标系中,已知的顶点,.(1)求边上的高;(2)设点是平分线所在直线上的一点,若,求点的坐标.【答案】(1) (2) 或【解析】【分析】(1)算出所在的直线,通过点到直线的距离公式,求出点到的距离,即为所求.(2)是平分线所在直线上的一点,则有,再由,算出点的坐标.【详解】(1)由可算出,则到的距离,故边上的高为(2)设,是平分线所在直线上的一点,则有,化简得,又或【点睛】求解三角形的高时,可以利用点到直线的距离公式进行化简;当遇到三角形角平分线的题目时,利用向量夹角相等是非常简便与实用的.22.已知,且.(1)若,求的值;(2)设,若的最大值为,求实数的值.【答案】(1)0 (2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平鲁区高中数学试卷
- 2025年6月浙江省淳安县交通发展投资集团有限公司招聘2名人员笔试参考题库附带答案详解
- 邳州市六中数学试卷
- 难度大的初二数学试卷
- 2025新疆三新煤业有限责任公司市场化招聘80人笔试参考题库附带答案详解
- 2025河北唐山政务服务外包有限公司为服务项目招聘工作人员70人笔试参考题库附带答案详解
- 2025福建泉州市晋江水务集团有限公司招聘派遣制人员8人笔试参考题库附带答案详解
- 2025年“才聚齐鲁成就未来”山东能源集团权属企业山东能源集团装备制造(集团)有限公司中高端人才公开招聘笔试参考题库附带答案详解
- 口腔专业毕业论文范文
- 2025年绿色生态农业合作社股权投资合作协议
- GB/T 15700-2008聚四氟乙烯波纹补偿器
- GB/T 12234-2019石油、天然气工业用螺柱连接阀盖的钢制闸阀
- 绿色施工培训记录表
- 普通话水平测试培训(标准版)课件
- 高中数学《基于问题链的数学教学探索》课件
- 胰十二指肠切除术的手术配合
- 同创伟业投资分析报告(附358家被投企业介绍)
- 数学-四年级(上册)-人教版-《亿以上数的认识及读法》教学课件
- 政治经济学ppt课件汇总(完整版)
- 互联网保险概述课件
- 医院超声影像科应急预案演练(徒手心肺复苏、过敏性休克、停电应急)
评论
0/150
提交评论