




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
0,19.2.2一次函数(2)一次函数的图像和性质,提问复习,1、什么叫正比例函数、一次函数?它们之间有什么关系?,2、正比例函数的图象是什么形状?,一般地,形如的函数,叫做正比例函数;,一般地,形如的函数,叫做一次函数。,当b=0时,y=kx+b就变成了,所以说正比例函数是一种特殊的一次函数。,正比例函数的图象是(),y=kx(k是常数,k0),y=kx+b(k,b是常数,k0),y=kx,经过原点的一条直线,经过一、三象限y随x增大而增大,经过二、四象限y随x增大而减小,3、正比例函数y=kx(k是常数,k0)中,k的正负对函数图象有什么影响?,既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?它们图象之间有什么关系?一次函数又有什么性质呢?,画图:请大家用描点法在同一坐标系中画出函数函数y=2x,y=2x+3,y=2x3的图象。,1、列表,2、描点,3、连线,4,7,-1,2,5,1,0,3,-3,-2,1,-5,-4,-1,-7,-2,-1,0,2,1,1、认识一次函数的图像,探索新知,y=2x,y=2x+3,y=2x3,比一比:正比例函数y=2x与一次函数y=2x+3、y=2x3图象有什么异同点.,观察:比较上面三个函数的相同点与不同点,根据你的观察结果回答下列问题:,(1)这三个函数的图象形状都是,并且倾斜程度;(2)函数y=2x图象经过原点,一次函数y=2x+3的图象与y轴交于点,即它可以看作由直线y=2x向平移单位长度而得到;一次函数y=2x3的图象与y轴交于点,即它可以看作由直线y=2x向平移单位长度而得到;,直线,相同,(0,3),上,3个,(0,3),下,3个,(1)所有一次函数y=kx+b的图象都是_,(2)直线y=kx+b与直线y=kx_;,(3)直线y=kx+b可以看作由直线y=kx_而得到,一条直线;,互相平行,平移个单位,当b0,向上平移b个单位;当b0,向上平移;当b0时,图象从左到右上升,y随x增大而增大,当K0时,交点在y轴正半轴(x轴上方).当b=0时,交点即原点当b0时,交点在y轴负半轴(x轴下方),b决定直线y=kx+b与y轴交点的坐标(0,b),k0,k0,b0,k0,图象经过一,二,三象限,图象经过一,三,四象限,图象经过一,二,四象限,图象经过二,三,四象限,y随x的增大而增大,y随x的增大而增大,y随x的增大而减小,y随x的增大而减小,直线y=2x-3与x轴交点坐标为(),与y轴交点坐标为(),图象经过第_象限,y随x增大而_,3、已知函数y=(m-2)x+n的图象经过一、二、三象限求:m、n的取值范围.,知识运用,2.在平面直角坐标系中,函数y=-2x+3的图象经过()A一、二、三象限B二、三、四象限C一、三、四象限D一、二、四象限,D,1.下列各点中,那些点在函数y=4x+1的图象上?那些不在函数的图象上?(2,9)(5,1)(-1,-3)(-0.5,-1),2.若函数y=2x-3的图象经过点(1,a),(b,2)两点,则a=,b=.,3.点已知M(-3,4)在一次函数y=ax+1的图象上,则a的值是.,课内练习:,4.将直线y=3x向下平移2个单位,得到直线.5.下列一次函数中,y随x的增大而减小的是(),6、一次函数y=3x-2的图象不经过()A第一象限B第二象限C第三象限D第四象限,7、一次函数y=2x+1的图象不经过()A第一象限B第二象限C第三象限D第四象限,8、已知一次函数y=x-2的大致图像为(),ABCD,D,B,C,1.函数y=3x4经过象限,3.一次函数y=(m-3)x+m+1的图象经过一、二、四象限,则正整数m=_.,2.一次函数y=-x-5的图像不经过_象限,o,4.根据一次函数的图象,说出解析式y=kx+b中,k与b的取值范围:K0,b0,k0,一、三、四,一,1、2,课堂检测,5.下列函数中,y的值随x值的增大而增大的函数是_.A.y=-2xB.y=-2x+1C.y=x-2D.y=-x-2,C,6.直线y=3x-2可由直线y=3x向平移单位得到。,7.直线y=x+2可由直线y=x-1向平移单位得到。,下,2,上,3,8.对于函数y=5x+6,y的值随x的值减小而_.,减少,9.函数y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生寒假社会实践报告格式
- 大学生会计出纳实习报告
- 小儿歌课件教学课件
- 乡镇卫生保洁承包协议书
- 土地厂房果园出售合同范本
- 个人如何签在线合同协议
- 专业市场入驻协议书范本
- 饮料配送劳务用工合同范本
- 不轻易犯规免责合同范本
- 农家放养鸡出售合同范本
- 2025年佛山危险品资格证模拟考试题
- 居家护理服务标准化操作手册
- 2025年山西省中考生物试卷真题(含答案解析)
- 省级质控中心管理制度
- 2025至2030中国安保服务市场现状动态与前景方向分析报告
- 2024年空中乘务专业人才培养方案调研报告
- 医院信息安全管理制度
- 林科院面试题库及答案
- 催收公司成本管理制度
- T/CSIQ 8014.1-2018组串式光伏逆变器技术规范第1部分:总则
- 固体废物的处理与处置-固体废物的最终处置技术
评论
0/150
提交评论