全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复数中数学思想“碰头会”数学解题讲究的是最基本思想方法,那么复数问题中主要有哪些基本的数学思想?1函数思想函数思想是一种重要的数学思想,有关复数的最值问题,常通过构造函数,利用函数的性质求解例1已知复数,则的最大值是_解析:设出复数的代数形式,将问题转化为有关函数的最值问题设 ,当时,有最大值,故选()评注:依据复数模的定义,将复数问题转化为实数问题。2整体思想对于有些复数问题,若从整体上去观察、分析题设结构,充分利用复数的有关概念、共轭复数的性质与模的意义等,对问题进行整体处理,能收到简捷、明快的效果例2设复数和它的共轭复数满足,求复数的值解析:设,将化为由,整体代入,得,根据复数相等的充要条件,得 故评注:在求解过程中,充分利用共轭复数性质,整体代入可获得简捷、明快、别具一格的解法3分类讨论思想复数问题中若含有参数,常常需要根据参数的范围分类讨论例3设,在内解方程解析:,为实数或纯虚数(1)若为实数,原方程转化为,解得;(2)若为纯虚数,设,于是方程转化为当时,解得;当时,方程无解综上,时,或;时,评注:在复数集内解含有参数的方程,根可能是实数也可能是虚数,因此需对此分类讨论4数形结合思想在处理复数问题时,灵活地运用复数的几何意义,以数思形、以形助数,可使许多问题得到直观、快捷地解决例4已知虚数的模为,求的最大值解析:由于与为变量,且,可由已知条件得到关于与的等式,也就是动点的轨迹,再结合图1考虑的取值情况,求出最大值由是虚数,得,又由,得这是以为圆心,为半径的圆,是圆上动点(除去)与连线的斜率,过点作圆的切线、,则斜率的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GBT 6730.49-2017 铁矿石 钾含量的测定 火焰原子吸收光谱法专题研究报告
- 智能硬件装调员达标模拟考核试卷含答案
- 实验动物繁殖员岗前实操掌握考核试卷含答案
- 制卤工创新应用竞赛考核试卷含答案
- 陶瓷注浆成型工创新意识竞赛考核试卷含答案
- 渔业观察员岗前理论综合考核试卷含答案
- 宠物驯导师岗前安全检查考核试卷含答案
- 裂解汽油加氢装置操作工诚信品质竞赛考核试卷含答案
- 胶合板胶合工岗位安全技术规程
- 粗钨酸钠溶液制备工安全应急测试考核试卷含答案
- 毕业生登记表
- (正式版)DB50∕T 1842-2025 《幸福河湖评价技术导则》
- 冬季三防安全培训课件
- 2025江苏南京水务集团有限公司招聘(22人)考试参考试题及答案解析
- 小学礼仪教学课件
- 【弯道超车】Unit 6 When disaster strikes 核心考点(单词 短语 句型 语法)-2025年外研版(2024)新八年级英语上册精讲精练 (含答案解析)
- DB61 1226-2018 锅炉大气污染物排放标准
- 静电场调控蛋白质自组装-洞察及研究
- 中小学音乐教师招聘模拟试题集
- 八年级语文古诗文默写训练试题
- 2025国家教育行政学院招聘9人(非事业编)笔试参考题库附答案解析
评论
0/150
提交评论