人教版九年级上学期期中考试数学试题_第1页
人教版九年级上学期期中考试数学试题_第2页
人教版九年级上学期期中考试数学试题_第3页
人教版九年级上学期期中考试数学试题_第4页
人教版九年级上学期期中考试数学试题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级上学期期中考试数学试题姓名:_ 班级:_ 成绩:_一、单选题1 . 如果二次函数在x的一定取值范围内有最大值(或最小值)为3,满足条件的x的取值范围可以是( )ABCD2 . 将两块全等的直角三角板按图1方式放置,固定三角板,然后将三角板绕点顺时针旋转到图2的位置,此时与,分别交于点,且,则旋转角的度数为( )ABCD3 . 关于x的一元二次方程ax2+3x20有两个不相等的实数根,则a的值可以是( )A0B1C2D34 . 已知二次函数,点A,B是其图像上的两点,( )A若,则B若,则C若,则D若,则5 . 平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点O按逆时针方向旋转90得OB,则点B的坐标为( )A(1,)B(-1,)C(-,1)D(,-1)6 . 如图图形不是轴对称图形的是( )ABCD7 . 一个三角形的两边长分别为5和3,第三边的边长是方程(x2)(x4)0的根,则这个三角形的面积是( )A6B3C4D128 . 若关于x的方程的三个根恰好可以成为某直角三角形的三边长,则m的值为( )A24B15C15或24D无解9 . 二次函数,当取值为时,有最大值y=-,则的取值范围为( )A0B03C3D以上都不对10 . 用配方法解方程x2+2x=4,配方结果正确的是( )A(x+1)2=4B(x+2)2=4C(x+2)2=5D(x+1)2=5二、填空题11 . 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是_12 . 如图,已知函数y=ax2+bx+c(a0)的图象的对称轴经过点(2,0),且与x轴的一个交点坐标为(4,0)下列结论:b24ac0; 当x2时,y随x增大而增大;抛物线过原点; 当0x4时,y0其中结论正确的是_(填序号)13 . 如图,将按顺时针方向转动某个角度后得到,若,则图中旋转中心是点_,旋转了_度,点的对应点是点_,线段的对应线段是线段_,线段的对应线段是线段_,的对应角是_,的对应角是_.14 . 某种商品,每盒原价为10元,在两个月内作了两次提价,两次提价后的每盒价格为12.1元,则这两个月平均每月提价的百分数为_15 . 已知关于x的方程(m2)x|m|+(2m+1)xm0是一元二次方程,则m_16 . 已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且EAF=45,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_.BAE+DAF=45;AEB=AEF=ANM;BM+DN=MN;BE+DF=EF三、解答题17 . 解方程:(1)(2)(配方法)18 . 如图,抛物线y=x2 +bx+c与x轴交于A(1,0),B(3,0)两点(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标19 . 某商场以45元/件的价格购进800件T恤,第一个月以75元/件售出了200件;第二个月若单价不变,预计仍可售出200件,为增加销售量,商场决定降价销售,经市场信息知,单价每降低1元,可多售出10件,但最低单价高于进价;第二个月后,商场将对剩下的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低了x元(1)填写表(不需化简):时间第一个月第二个月清仓时单价(元)7540销售量(件)200(2)如果商场在此批次销售中要获利9000元,那么第二个月的售价应是多少?20 . 在1212的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题(1)将ABC围绕这原点O按顺时针方向旋转90,得到A1B1C1;(2)以坐标原点O为位似中心,作出与A1B1C1位似且位似比为1:2的A2B2C2,并写出点A2的坐标21 . 如图,在O中,弦BCOA,AC与OB相交于点D,ADB75,试求C的度数22 . 已知抛物线y=a(x1)23(a0)的图象与y轴交于点A(0,2),顶点为B(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得PAB的周长取最小值23 . 如图,在中,在、上分别找点、,使,将绕点顺时针方向旋转,的中点恰好落在的中点,延长交于,连接.(1)四边形是什么特殊四边形?说明理由.(2)是否存在中,使得图中四边形为菱形?若不存在,说明理由;若存在,求出此时的面积与面积的倍数关系.24 . 已知抛物线经过点,且抛物线上任意不同两点都满足:当时,;当时,;抛物线与轴另一个交点为,与轴交于点,对称轴与轴交于点.(1)求抛物线的对称轴及点的坐标;(2)过点作轴的平行线交抛物线的对称轴于点,当四边形是正方形时,求抛物线的解析式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点和,与直线交于点,若,结合函数的图象,直接写出的取值范围.25 . 已知关于x的一元二次方程(1)试证:无论m取任何实数,方程都

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论