微分方程的基本概念、可分离变量、齐次方程_第1页
微分方程的基本概念、可分离变量、齐次方程_第2页
微分方程的基本概念、可分离变量、齐次方程_第3页
微分方程的基本概念、可分离变量、齐次方程_第4页
微分方程的基本概念、可分离变量、齐次方程_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微分方程,第十二章,积分问题,微分方程问题,推广,第一节微分方程的基本概念,求所满足的微分方程.,例4.已知曲线上点P(x,y)处的法线与x轴交点为Q,解:如图所示,令Y=0,得Q点的横坐标,即,点P(x,y)处的法线方程为,且线段PQ被y轴平分,第二节可分离变量的微分方程,例3.求微分方程,的通解.,解:分离变量得,两边积分,得,即,(c为任意常数),或,说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解y=0),初值问题,第三节齐次方程,例1.解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,(当c=0时,y=0也是方程的解),(c为任意常数),例2.解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明:显然x=0,y=0,y=x也是原方程的解,但在,(c为任意常数),求解过程中丢失了.,内容小结,1.微分方程的概念,微分方程;,定解条件;,2.可分离变量方程的求解方法:,说明:通解不一定是方程的全部解.,有解,后者是通解,但不包含前一个解.,例如,方程,分离变量后积分;,根据定解条件定常数.,解;,阶;,通解;,特解,y=x及y=c,找出事物的共性及可贯穿于全过程的规律列方程.,常用的方法:,1)根据几何关系列方程,2)根据物理规律列方程,3)根据微量分析平衡关系列方程,(2)利用反映事物个性的特殊状态确定定解条件.,(3)求通解,并根据定解条件确定特解.,3.解微分方程应用题的方法和步骤,思考与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论