


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3. 1数系的扩充二、教学目标:.1. 经历数的概念的发展和数系扩充的过程,体会数学发展和创造的过程,以及数学发生、发展的客观需求。2.理解复数的基本概念以及复数相等的充要条件。三、课前预习1. 思考:N、Z、Q、R分别代表什么?它们是如何发展得来的?2判断下列方程在实数集中的解的个数(引导学生回顾根的个数与的关系):(1) (2) (3) (4)四、讲解新课1、新课引人:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=1这样的方程还是无解的,因为没有一个实数的平方等于1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数2、讲解新课:1.虚数单位:(1)它的平方等于-1,即; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. 与1的关系: 就是1的一个平方根,即方程x2=1的一个根,方程x2=1的另一个根是!3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=14.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:NZQRC.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a,b,c,dR,那么a+bi=c+dia=c,b=d复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小例1请说出复数,4,0,6i的实部和虚部,哪些实数,哪些是虚数,有没有纯虚数?例2实数m取什么数值时,复数z=m+1+(m1)i是:(1)实数? (2)虚数? (3)纯虚数?例3已知(2x1)+i=y(3y)i,其中x,yR,求x与y.五、课堂练习1.复数(2x2+5x+2)+(x2+x2)i为虚数,则实数x满足_. 2.已知集合M=1,2,(m23m1)+(m25m6)i,集合P=1,3.MP=3,则实数m的值为_.3.复数z1=a+bi,z2=c+di(a、b、c、dR),则z1=z2的充要条件是_.4.已知mR,复数z=+(m2+2m3)i,当m为何值时,(1)zR; (2)z是虚数;(3)z是纯虚数;(4)z=+4i.六、课堂小结七、课后作业1若复数为纯虚数,则实数的值为 2分别写出下列复数的实部与虚部, , , ,3指出下列各数中,哪些是实数,哪些是虚数,哪些是纯虚数?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15754-2025产品几何技术规范(GPS)尺寸和公差标注圆锥
- GB/T 42124.3-2025产品几何技术规范(GPS)模制件的尺寸和几何公差第3部分:铸件尺寸公差、几何公差与机械加工余量
- 2025年夏季防暑降温安全知识培训试题
- 计算机网络技术专业教学标准(高等职业教育专科)2025修订
- 2025年中国近场通信(NFCNFC)支付技术行业市场全景分析及前景机遇研判报告
- 2025年中国健康追踪器行业市场全景分析及前景机遇研判报告
- 手术前准备指南
- 癌症早期发现与治疗
- 2025年中国小麦加工行业市场深度分析及发展前景预测报告
- 中国港口设备行业市场调研及投资战略规划报告
- 2025-2030年中国楼宇对讲系统行业市场深度调研及竞争格局与投资研究报告
- 暑假提升部编版小学语文四升五暑假阅读提升之概括文章中心思想 课件
- 2025年甘肃省陇南市事业单位招聘247人笔试参考题库及参考答案详解1套
- 2025至2030年中国航空发动机维修行业市场运营态势及发展前景研判报告
- 2025深圳语文中考作文(10篇)
- 2025春学期三年级语文下册教学工作总结 (三篇)
- 2025聊城市辅警考试试卷真题
- 标准文本-《水运工程大临建设标准化指南》
- 2025-2030IVD原酶料市场发展态势剖析及未来需求趋势预测研究报告
- 基于单片机的智能台灯控制系统的设计14000字【论文】
- 2025广西专业技术人员公需科目培训考试答案
评论
0/150
提交评论