

免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2016-20172016-2017 宝清一高高二学年第二次月考宝清一高高二学年第二次月考 数学理科数学理科试题试题 一、选择题一、选择题(每题 5 分,共 12 小题,合计 60 分) 1.抛物线 2 4yx的焦点坐标是() .(1,0)A.(2,0)B 1 .(0,) 16 C 1 .(0, ) 8 D 2 若双曲线x 2 a 2 y 2 b 21 的离心率为 3,则其渐近线方程为( ) Ay2xBy 2xCy1 2x Dy 2 2 x 3一个四面体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0)、(1,2,0)、(0,2,2)、 (3,0,1),则该四面体中以yOz平面为投影面的正视图的面积为() A3B.5 2 C2D.7 2 4若函数 32 3f xaxxx 恰有三个单调区间,则实数a的取值范围为 () A( 3, ) B 3, ) C( 3,0) (0,) D( ,0)(0,3) 5已知命题xxRxplg2,:,命题0,: 2 xRxq,则() A命题qp 是假命题B命题qp 是真命题 C命题)( qp是真命题D命题)( qp是假命题 6.设P为曲线C: 2 23yxx上的点,且曲线C在点P处切线倾斜角的取值范围为0, 4 , 则点P横坐标的取值范围为 () A 1 1, 2 B1,0C0,1D 1 ,1 2 7若函数f(x)kxlnx在区间(1,)上单调递增,则k的取值范围是() A(,2B(,1C2,)D1,) 8若函数f(x)在(0,)上可导,且满足f(x)xf(x),则一定有() A函数F(x)f x x 在(0,)上为增函数 B函数G(x)xf(x)在(0,)上为增函数 2 C函数F(x)f x x 在(0,)上为减函数 D函数G(x)xf(x)在(0,)上为减函数 9若函数f(x)lnxa x在区间1,e上的最小值为 3 2,则实数 a的值为() A.3 2 B. eC.e 2 D非上述答案 10 由曲线与直线所围成的封闭图形的面积为() (A)(B)(C)(D) 11函数f(x)2e x 2x的图象大致是( ) 12、已知椭圆 22 11 22 11 1(0) xy ab ab 的离心率为 2 2 ,双曲线 22 22 22 22 1(0,0) xy ab ab 与椭圆 有相同的焦点 12 ,F F,M是两曲线的一个公共点, 若 12 60FMF , 则双曲线的渐近线方程为 () A 2 2 yx Byx C2yx D3yx 二、填空题(本题包括二、填空题(本题包括 4 4 小题,共小题,共 2020 分)分) 13 若等比数列an的首项为2 3,且 a4dxx 4 1 21,则公比等于_ xxy2 2 0 yx 3 2 6 5 3 1 6 1 3 14直线l过双曲线1 416 22 yx 的右焦点且与双曲线的右支交与 A、B 两点,4AB,则 A、B 与 双曲线的左焦点所得三角形的周长为_。 15.求曲线y=x 3-x+1 过点(1,1)的切线方程为 . 16已知函数,且函数在区间(0,1)内取得极大 值,在区间(1,2)内取得极小值,则 的取值范围为_ 三、解答题三、解答题 17. (本小题满分 10 分)已知函数12)( 23 xxxf (1)求)(xf在区间 1 , 1上的最大值; (2)若函数mxxfxg)()(在区间2 , 2上存在递减区间,求实数 m 的取值范围 18(本小题满分 12 分)如图,在直三棱柱ABCA1B1C1中,ABBC2AA1,ABC90,D是BC的中 点 (1)求证:A1B平面ADC1; (2)求二面角C1ADC的余弦值; 19.(本小题满分 12 分) 已知函数f(x)=2 3x 3-ax2-2ax,其中 aR. ()若x=1 是函数f(x)的极值点,求a的值; ()若f(x)在区间(2,+)上单调递增,求a的取值范围; 20. (本小题满分 12 分)如图,在四棱锥PABCD中,底面ABCD为菱形,BAD60,Q为AD的 中点 (1)若PAPD,求证:平面PQB平面PAD; (2)若平面PAD平面ABCD,且PAPDAD2,点M在 线 段PC 32 11 ( )2( , ,) 32 f xxaxbxc a b cR ( )f x 22 (3)zab 4 上,试确定点M的位置,使二面角MBQC大小为 60,并求出PM PC的值 21.(本小题满分 12 分) 已知函数f(x)=ln(x+1 a)-ax,其中 aR且a0 ()讨论f(x)的单调区间; ()若直线y=ax的图像恒在函数f(x)图像的上方,求a的取值范围; ()若存在-1 a0. 22. (本小题满分12 分)设椭圆C1: x 2 a 2 y 2 b 21(ab0)的左、 右 焦 点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标 原 点),如图若抛物线C2:yx 21 与 y轴的交点为B,且经 过 F1、F2点 (1)求椭圆C1的方程; (2)设M(0,4 5),N 为抛物线C2上的一动点,过点N作 抛 物线C2的切线交椭圆C1于P、Q两点,求MPQ面积的最大 值 5 2016-20172016-2017 宝清一高高二学年第二次月考宝清一高高二学年第二次月考数学理科试题答案数学理科试题答案 1 1-5.C-5.CBACBACC C 6 6-10-10ADCDDADCDD 1111-12-12B BA A 13132 3 1414 2424 1515 2x-y-1=0,x+4y-5=02x-y-1=0,x+4y-5=01616 17. 18 如图,在直三棱柱ABCA1B1C1中,ABBC2AA1,ABC90,D是BC的中点 6 (1)求证:A1B平面ADC1; (2)求二面角C1ADC的余弦值; 解析(1)证明:连接A1C,交AC1于点O,连接OD. 由ABCA1B1C1是直三棱柱得四边形ACC1A1为矩形,O为A1C的中点 又D为BC中点,所以OD为A1BC中位线, 所以A1BOD, 所以OD平面ADC1,A1B 平面ADC1, 所以A1B平面ADC1. (2)由ABCA1B1C1是直三棱柱,且ABC90,故BA、BC、BB1两两垂直 如图建立空间直角坐标系Bxyz. 设BA2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0) 所以AD (1,2,0),AC 1 (2,2,1) 设平面ADC1的法向量为n n(x,y,z),则有 n nAD 0, n nAC1 0. 所以 x2y0, 2x2yz0. 取y1,得n n(2,1,2) 易知平面ADC的法向量为v v(0,0,1) 由二面角C1ADC的平面角是锐角,得 cosn n,v v|n nv v| |n n|v v| 2 3. 所以二面角C1ADC的余弦值为2 3. 19.(本小题满分 13 分) 7 已知函数f(x)=2 3x 3-ax2-2ax,其中 aR. ()若x=1 是函数f(x)的极值点,求a的值; ()若f(x)在区间(2,+)上单调递增,求a的取值范围; 解:()由f(x)=2 3x 3-ax2-2ax,得 f (x)=2x 2-2ax-2a,.2 分 x=1 是函数f(x)的极值点, f (1)= 2-2a-2a=0,解得a=1 2,. 4 分 经检验x=1 为函数f(x)的极值点,(不检验 1 分扣去) 所以a=1 2. .5 分 ()f(x)在区间(2,)上单调递增, f (x)=2x 2-2ax-2a0 在区间(2,+)上恒成立, a x x+1对区间 x(2,+)恒成立,.8 分 令g(x)= x x+1,则 g(x)=2x(x+1)-x (x+1) = x+2x (x+1) 当x(2,+)时,g(x)0,有g(x)= x x+1g(2)= 4 3,.12 分 a的取值范围为(-, 4 3.13 分 法二:上同, a x x+1对区间 x(2,+)恒成立,.8 分 令t=x+1,x(2,+), 则x=t-1,t3 x x+1= (t-1) t =t+1 t-2 ,t3 g(t) =t+1 t-2, 在 t(3,+)上是单调递增函数 g(t)g(3)= 4 3 .12 分 a的取值范围为(-, 4 3.13 分 法三:f(x)在区间(2,)上单调递增, f (x)=2x 2-2ax-2a0 在区间(2,+)上恒成立,.8 分 8 记=(2a)-8(-2a)=4a+16a,则 0 或 0 a 22 f (2)=8-4a-2a0 , 即-4a0 或 a0 a4 a4 3 , 解得a4 3 . 12 分 a的取值范围为(-,4 3.13 分 20.如图,在四棱锥PABCD中,底面ABCD为菱形,BAD60,Q为AD的中点 (1)若PAPD,求证:平面PQB平面PAD; (2)若平面PAD平面ABCD,且PAPDAD2,点M在线段PC上,试确定点M的位置,使二 面角MBQC大小为 60,并求出PM PC的值 解析(1)PAPD,Q为AD的中点,PQAD,又底面ABCD为菱形,BAD60, BQAD,又PQBQQ,AD平面PQB,又AD平面PAD,平面PQB平面PAD; (2)平面PAD平面ABCD,平面PAD平面ABCDAD,PQAD, PQ平面ABCD.以Q为坐标原点,分别以QA、QB、QP为x轴、y轴、z轴建立空间直角坐 标系如图 则Q(0,0,0),P(0,0, 3),B(0, 3,0),C(2, 3,0),设PM PC(01), 所以M(2, 3, 3(1),平面CBQ的一个法向量是n n1(0,0,1), 9 设平面MQB的一个法向量为n n2(x,y,z), 所以 QM n n 20, QB n n 20, 2x 3y 3z10, 3y0, y0, x 31z 2 . 取n n2(33 2 ,0, 3), 由二面角MBQC大小为 60,可得: 1 2 |n n1n n2| |n n1|n n2|,解得 1 3,此时 PM PC 1 3. 21.已知函数f(x)=ln(x+1 a)-ax,其中 aR且a0 ()讨论f(x)的单调区间; ()若直线y=ax的图像恒在函数f(x)图像的上方,求a的取值范围; ()若存在-1 a0. 解:()f(x)错误!未找到引用源。错误!未找到引用源。的定义域为(-1 a,+). 其导数f (x)= 1 x+1 a -a=- ax ax+1 .1 分 当a0,函数在(-1 a,+)上是增函数;.2 分 当a0 时,在区间(-1 a,0)上, f (x)0;在区间(0,+)上,f (x)0 时, 令h(x)=ax-f(x),则h(x)=2ax-ln(x+1 a).6 分 问题化为求h(x)0 恒成立时a的取值范围. 由于h(x)=2a- 1 x+1 a = 2a(x+ 1 2a) x+1 a .7 分 在区间(-1 a,- 1 2a)上, h(x)0错误!未找到错误!未找到 10 引用源。引用源。. h(x)的最小值为h(- 1 2a), 所以只需h(- 1 2a)0,即 2a(- 1 2a)-ln (- 1 2a+ 1 a)0 ln 1 2ae 2 .9 分 ()由于当a0 构造函数g(x)=f(-x)-f(x)( -1 ax0) g(x)=ln(1 a-x)-ln(x+ 1 a)+2ax 错误!未找到引用源。错误!未找到引用源。. 11 分 则g(x)= 1 x-1 a - 1 x+1 a = 2ax x- 1 a 0-f(x)错误!未找到引用源。错误!未找到引用源。,又f(x1)=0,f(-x1)0=f(x2), 由f(x)在(0+)上为减函数可知x2-x1.即x1+x20.14 分 22.设椭圆C1:x 2 a 2 y 2 b 21(ab0)的左、右焦点分别是 F1、F2,下顶点为A,线段OA的中点为B(O为 坐标原点),如图若抛物线C2:yx 21 与 y轴的交点为B,且经过F1、F2点 (1)求椭圆C1的方程; (2)设M(0,4 5),N 为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点, 11 求MPQ面积的最大值 解析(1)由题意可知B(0,1),则A(0,2),故b2. 令y0 得x 210 即 x1,则F1(1,0),F2(1,0),故c1. 所以a 2b2c25, 于是椭圆C1的方程为:x 2 5 y 2 4 1. (2)设N(t,t 21),由于 y2x知直线PQ的方程为: y(t 21)2t(xt) 即y2txt 21. 代入椭圆方程整理得:4(15t 2)x220t(t21)x5(t21)2200, 400t 2(t21)280(15t2)(t21)24 80(t 418t23), x1x25t t 21 15t 2 ,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理技能考试题及答案
- 流动人口政策优化-洞察及研究
- 《民航空防安全和反恐怖预警响应规定》考核试题及答案
- 自动驾驶与人工智能新应用
- 2025年中国轻质砖薄层灰泥数据监测报告
- 2025年中国霉菌培养箱数据监测报告
- 2025年中国菠萝油香精数据监测报告
- 2025年中国高温钼杆数据监测研究报告
- 2025年5G网络对远程办公的影响
- 2025年5G网络对城市交通系统的影响评估
- 2025年高等教育法学类自考-00859警察组织行为学历年参考题库含答案解析(5套典型考题)
- 2025年大队委选拔笔试题目及答案
- 2025年广东省中学生天文知识竞赛试题(及答案)
- 2025年秋期部编版五年级上册小学语文教学计划+教学进度表
- 2025年送气工考试试题及答案
- 国企投资融资管理办法
- 水电站大坝安全现场检查技术规程 -DL-T 2204
- 采购电脑管理办法细则
- 中国阅兵仪式课件
- 中医特色在手术室护理中的应用
- 事故应急救援包括事故单位自救和对事故单位
评论
0/150
提交评论