数学人教版八年级上册最短路径问题.ppt_第1页
数学人教版八年级上册最短路径问题.ppt_第2页
数学人教版八年级上册最短路径问题.ppt_第3页
数学人教版八年级上册最短路径问题.ppt_第4页
数学人教版八年级上册最短路径问题.ppt_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级上册,13.4课题学习最短路径问题,问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地到河边什么地方饮马可使他所走的路线全程最短?,探索新知,追问1这是一个实际问题,你打算首先做什么?,将A,B两地抽象为两个点,将河l抽象为一条直线,探索新知,探索新知,(1)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图),作法:(1)作点B关于直线l的对称点B;(2)连接AB,与直线l相交于点C则点C即为所求,探索新知,问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,证明:如图,在直线l上任取一点C(与点C不重合),连接AC,BC,BC由轴对称的性质知,BC=BC,BC=BCAC+BC=AC+BC=AB,AC+BC=AC+BC,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,证明:在ABC中,ABAC+BC,AC+BCAC+BC即AC+BC最短,探索新知,追问:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?,归纳小结,(1)本节课研究问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论