




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3实数,义务教育课程标准实验教科书(人教版),文水县实验中学韩海燕,有理数,整数,分数,有理数,正有理数,零,负有理数,都是有理数。,一回顾导入,初步认识,试一试,把下列有理数写成小数的形式,你有什么发现?,5=5.0,.,事实上,任何一个有理数都可以写成有限小,数或无限循环小数的形式;反过来,任何有限小,数或无限循环小数也都是有理数。,叫做无理数.,所有的数都可以写成有限小数和无限循环小数的形式吗?,=1.41421356237309504880168,=1.70997594667669698935310,=3.1415926535897932384626,无限不循环小数,二思考探索,探究新知,无理数也有正负之分,,正无理数:负无理数:,活动1,无理数的分类,例如:,练习:判断下列数哪些是有理数?哪些是无理数?,有理数是:,无理数是:,无限不循环小数叫做无理数.,圆周率及一些含有的数;,开不尽方的数;,有一定的规律,但不循环的无限小数.,无理数有三类:,无理数的特征,圆周率及一些含有的数;,开不尽方的数;,有一定的规律,但不循环的无限小数.,注意:带根号的数不一定是无理数如,,把下列各数分别填入相应的集合内:,0.101,,,,有理数集合,无理数集合,学以致用,有理数和无理数统称实数,有理数,无理数,实数,初中阶段对数的认识范围扩充为,新加入,思考:实数如何分类?,有理数和无理数统称实数,实数的分类,有限小数和无限循环小数,无限不循环小数,有理数和无理数统称实数.,实数的分类,如图,直径为个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点o到达A点,则点A的坐标为多少?,无理数可以用数轴上的点来表示.,问题1.你能在数轴上表示出吗?,OA=,A的坐标是,直径为1的圆的周长是多少?,A,问题2.你能在数轴上表示出吗?,把两个边长为1的小正方形通过剪、拼,得到一个大正方形,大正方形的边长为从而说明边长为1的小正方形的对角线为。,1,1,(1)如下图,以一个单位长度为边长画一个正方形,以原点为圆心,正方形对角线为半径画弧,与正、负半轴的交点分别为点A和点B,数轴上A点和B点对应的数是什么?,(2)如果将所有有理数都标到数轴上,那么数轴填满吗?,B,A,每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。此处用到数形结合思想。,C,数轴上的点有些表示有理数,有些表示无理数.,1,1,实数与数轴上的点是一一对应的。,O,每一个无理数都可以用数轴上的一个点表示出来,1.判断下列说法是否正确,(1)实数不是有理数就是无理数。(),(2)无理数都是无限不循环小数。(),(5)无理数都是无限小数。(),(3)带根号的数都是无理数。(),(4)无理数一定都带根号。(),三运用新知,深化理解,如是有理数,如就没有根号,(6)无限小数都是无理数。(),如就是有理数,练一练,2.把下列各数填入相应的集合内:,(1)有理数集合:,(2)无理数集合:,(3)整数集合:,(4)负数集合:,(5)分数集合:,(6)实数集合:,师生互动,课堂小结,?,1无理数的概念,无理数是无限不循环的小数.,2.实数的概念,有理数和无理数统称为实数.,3.实数的分类,4.实数与数轴上的点是一一对应的.5.本节课我们学到了:分类讨论思想和数形结合思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 罐装水包装设计原理与视觉传达考核试卷
- 豆类食品的烹饪技巧与风味考核试卷
- 小学生预防夏季传染病
- 免疫靶点药物治疗
- 网络游戏虚拟道具设计版权归属与市场拓展合作补充协议
- 物流包装设备采购与物流包装质量检测技术支持协议
- 直播平台虚拟礼物知识产权保护及广告投放协议
- 古建筑碳纤维加固施工与施工进度跟踪合同
- 家族企业员工忠诚协议与财富隔离及知识产权保护合同
- 理财市场风险控制补充协议
- 飞行区培训题库
- 项目部周例会制度
- 战略管理教学ppt课件(完整版)
- 云南锂电池项目可行性研究报告
- 体育科研方法试卷试题答案
- 《国家电网公司十八项电网反事故措施(试行)》实施细则
- 中国民主同盟入盟申请表(样表)
- 国家标准色卡电子版(WORD版图片)
- 9种基坑坍塌案例
- 《呼吸机的使用管理》PPT课件.ppt
- 儿童相声剧本43286
评论
0/150
提交评论