天津部分区高三数学上学期期末考试试卷文_第1页
天津部分区高三数学上学期期末考试试卷文_第2页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018-2019学年天津市部分区高三(上)期末数学试卷(文科)一、选择题(本大题共8小题,共40.0分)1.设全集,则 ( )A. B. C. D. 【答案】A【解析】【分析】根据集合的交集、并集和补集的运算,即可求解.【详解】由题意,全集,则,则,故选A.【点睛】本题主要考查了集合的混合运算问题,其中解答中熟记集合的交集、并集和补集的运算是解答问题的关键,着重考查了推理与运算能力,属于基础题.2.设变量x,y满足约束条件,则目标函数的最小值为A. 1 B. 2 C. 7 D. 8【答案】A【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案【详解】由变量x,y满足约束条件x+y-10x-y-10x-3y+30作出可行域如图,联立x-y-1=0x+y-1=0,解得A(1,0),化目标函数z=x+2y为y=-12x+12z,由图可知,当直线y=-12x+12z过点A时,直线在y轴上的截距最小,z有最小值为1故选:A【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题3.阅读如图的程序框图,运行相应的程序,则输出S的值为( )A. 8 B. 4 C. 4 D. 20【答案】B【解析】【分析】由题意,执行如图所示的程序框图,逐次计算,即可求得输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,第1次循环,不满足条件S=102=8,i=2;第2次循环,不满足条件S=84=4,i=3;第3次循环,不满足条件S=48=4,i=4;第4次循环,满足条件S=4,此时输出4,故选B.【点睛】识别算法框图和完善算法框图是近年高考的重点和热点解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合4.已知a=log3,b=213,c=ln13,则a,b,c的大小关系为( )A. abc B. acbC. cab D. bac【答案】D【解析】【分析】利用指数函数、对数函数的单调性直接求解 【详解】解:0=log1a=log320=1,c=ln13ac故选:D【点睛】本题考查利用指数函数、对数函数的单调性等基础知识比较三个数的大小,考查运算求解能力,考查函数与方程思想,是基础题 5.设R,则“sin=12”是“=6”的A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B【解析】【分析】根据三角函数的性质,利用充分条件和必要条件的定义进行判断【详解】由sin=12,可知=2k+6或2k+56,kZ“sin=12”是“=6”的必要不充分条件故选:B【点睛】本题主要考查充分条件和必要条件的应用,利用三角函数的性质是解决本题的关键,比较基础6.在ABC中,D为BC的中点,AB=2,AC=7,则ADBC=( )A. 32 B. 32C. 3 D. 3【答案】A【解析】【分析】根据平面向量的线性表示与数量积的定义,计算即可【详解】解:如图所示,ABC中,D是BC的中点,BD=12BC=12(ACAB),AD=AB+BD=AB+12(ACAB)=12AB+12AC,ADBC=(12AB+12AC)(ACAB)=12(AC2AB2)=12(7222)=32故选:A【点睛】本题考查了平面向量的线性表示与数量积的运算问题,是基础题7.函数f(x)=sin(x+)(其中|0,0)的图象求解析式(1)A=ymaxymin2,B=ymax+ymin2.(2)由函数的周期T求,T=2.(3)利用“五点法”中相对应的特殊点求.8.已知双曲线x2a2y2b2=1a0,b0的左、右焦点分别为F1,F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若PQF2的周长为12,则当ab2取得最大值时,该双曲线的渐近线方程为( )A. y=23x B. y=22xC. y=32x D. y=2x【答案】B【解析】【分析】由题意,ABF2的周长为24,利用双曲线的定义,可得4b2a=244a,进而转化,利用导数的方法,即可得出结论【详解】解:由题意,ABF2的周长为24,|AF2|+|BF2|+|AB|=24,|AF2|+|BF2|AB|=4a,|AB|=2b2a,4b2a=244a,b2=a(6a),y=ab2=a2(6a),y=3a(4a),0a0,a4,y0,y0,且4x+1y=1,若x+ym2+m+3恒成立,则实数m的取值范围是_【答案】3,2【解析】【分析】根据已知条件,转化为(x+y)minm2+m+3,然后得到x+y=(x+y)(4x+1y),再结合基本不等式确定其最值即可【详解】解:x0,y0,(x+y)minm2+m+3恒成立,且4x+1y=1,x+y=(x+y)(4x+1y)=5+4yx+xy5+24yxxy=9 因为(x+y)minm2+m+3恒成立,m2+m+393m2故答案为:-3,2【点睛】本题重点考查了基本不等式及其灵活运用,注意基本不等式的适应关键:一正、二定(定值)、三相等(即验证等号成立的条件),注意给条件求最值问题,一定要充分利用所给的条件,作出适当的变形,然后巧妙的利用基本不等式进行处理,属于基础题14.已知函数fx=x24x+a,x1,lnx+1,x1若关于x的方程fx=3恰有两个互异的实数解,则实数的取值范围是_【答案】,6【解析】【分析】利用分段函数,求出x1的零点,然后在求解x1时的零点,即可得到答案.【详解】由题意,函数fx=x24x+a,x1lnx+1,x1,当x1时,方程fx=3,可得lnx+1=3,解得x=e2,函数由一个零点,当x1时,函数只有一个零点,即x24x+a=3在x1上只有一个解,因为函数gx=x24x+a开口向上,对称的方程为x=2,所以函数在(,1)为单调递减函数,所以g13,即3243+a3,解得a6,即实数的取值范围是(,6).【点睛】本题主要考查了分段函数的零点的应用,以及二次函数的图象与性质的应用,其中解答中把函数的零点问题转化为二次函数问题,借助二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力.三、解答题(本大题共6小题,共80.0分)15.为维护交通秩序,防范电动自行车被盗,天津市公安局决定,开展二轮电动自行车免费登记、上牌照工作.电动自行车牌照分免费和收费(安装防盗装置)两大类,群众可以 自愿选择安装.已知甲、乙、丙三个不同类型小区的人数分别为15000,15000,20000.交管部门为了解社区居民意愿,现采用分层抽样的方法从中抽取10人进行电话访谈.()应从甲小区和丙小区的居民中分别抽取多少人?()设从甲小区抽取的居民为Aii=1,2,3,,丙小区抽取的居民为Bii=1,2,3,.现从甲小区和丙小区已抽取的居民中随机抽取2人接受问卷调查.()试用所给字母列举出所有可能的抽取结果;()设M为事件“抽取的2人来自不同的小区”,求事件M发生的概率.【答案】()甲小区抽取3人、丙小区抽取4人()(i)见解析(ii)47 【解析】【分析】()利用分层抽样的性质能求出应从甲、乙、丙三个不同类型小区中分别抽取得3人,3人,4人()()从甲小区抽取的3位居民为A1,A2,A3,丙小区抽取的4人分别为B1,B2,B3,B4利用列举法能求出所有可能结果()由()可得基本事件总个数,M为事件“抽取的2人来自不同的小区”利用列举法能求出事件M发生的概率【详解】()因为三个小区共有50000名居民,所以运用分层抽样抽取甲、丙小区的人数分别为:甲小区:150005000010=3(人);丙小区:200005000010=4(人).即甲小区抽取3人、丙小区抽取4人 ()(i)设甲小区抽取的3人分别为A1,A2,A3,丙小区抽取的4人分别为B1,B2,B3,B4,则从7名居民中抽2名居民共有21种可能情况:A1,A2,A1,A3,A1,B1,A1,B2,A1,B3,A1,B4A2,A3,A2,B1,A2,B2,A2,B3,A2,B4A3,B1,A3,B2,A3,B3,A3,B4B1,B2,B1,B3,B1,B4 B2,B3,B2,B4,B3,B4 (ii)显然,事件M包含的基本事件有:A1,B1,A1,B2,A1,B3,A1,B4 A2,B1,A2,B2,A2,B3,A2,B4A3,B1,A3,B2,A3,B3,A3,B4共12种,所以P(M)=1221=47. 故抽取的2人来自不同的小区的概率为47【点睛】本题考查分层抽样、用列举法计算随机事件所含基本事件数、古典概型及其概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力16.在BC中,内角A,B,C所对的边分别为a,b,c已知3bcosC=csinB1求角C的大小2若c=27,ABC的面积为63,求ABC的周长【答案】()C=3()10+27. 【解析】【分析】()利用正弦定理化简已知等式可得tanC值,结合范围C(0,),即可得解C的值()利用正弦定理及面积公式可得ab,再利用余弦定理化简可得a+b值,联立得a,b从而解得ABC周长【详解】()由正弦定理bsinB=csinC,得3sinBcosC=sinBsinC,在ABC中,因为sinB0,所以3cosC=sinC故tanC=3, 又因为0C,所以C=3 ()由已知,得12absinC=63.又C=3,所以ab=24. 由已知及余弦定理,得a2+b2-2abcosC=28, 所以a2+b2=52,从而(a+b)2=100.即a+b=10 又c=27,所以ABC的周长为10+27.【点睛】本题主要考查了正弦定理,余弦定理的应用,考查了转化思想和数形结合思想,属于基础题17.如图,四棱锥PABCD中,底面四边形ABCD为菱形,DAB=3,ADP为等边三角形.()求证:ADPB;()若AB=2,BP=6,求直线PB与平面ABCD所成的角.【答案】()见解析 ()4. 【解析】【分析】()取AD中点E,连结PE,BE,由已知可得PEAD,BEAD,又PEBE=E,即可证AD平面PEB,从而可得PBAD()先证明PEEB,可得PE平面ABCD,由线面角定义即可知PBE即为所求【详解】()因为四边形ABCD为菱形,且BAD= 3 所以ADB为等边三角形取线段AD的中点E,连接BE、PE,则BEAD. 又因为PAD为等边三角形,所以PEAD因为PE平面PBE,BE平面PBE,且PEBE=E,所以直线AD平面PBE, 又因为PB面PBE,所以ADPB ()因为PAD,BAD为等边三角形,且其边长为2,所以PE=BE=3,又PB=6,所以PE2+BE2=PB2,所以PEEB. 因为PEAD,ADBE=E,所以PE面ABCD, 所以PBE为直线PB与平面ABCD所成的角. 在直角PBE中,PE=BE,所以PBE=4故直线PB和平面ABCD所成的角为4.【点睛】本题主要考查了直线与平面垂直的性质及线面角求法,属于基础题 18.已知数列an是等比数列,数列bn是等差数列,且a1=2,b1=1,a2+b2=7,a3+b3=13.(1)求an和bn的通项公式;(2)设cn=bnannN*,求数列cn的前n项和Tn.【答案】(1)an=2n,bn=2n1;(2)Tn=32n+32n【解析】【分析】(1)设等比数列an的公比为qq0,等差数列bn的公差为d,列出方程组,求得d,q的值,即可得到数列的通项公式;(2)由(1)得cn=bnan=2n12n, 利用乘公比错位相减法,即可求解数列的和.【详解】(1)设等比数列an的公比为qq0,等差数列bn的公差为d,依题意有a2+b2=2q+1+d=7a3+b3=2q2+1+2d=13,即2q+d=6q2+d=6, 解得q=2d=2或q=0d=6(舍)an=2n,bn=1+2n-1=2n-1,数列an的通项公式为an=2n,数列bn的通项公式为bn=2n-1(2)由(1)得cn=bnan=2n-12n, Tn=12+322+2n-12n 12Tn=122+323+2n-32n+2n-12n+1,-得12Tn=12+2(122+123+12n)-2n-12n+1=12+214(1-12n-1)1-12-2n-12n+1=32-2n+32n+1Tn=3-2n+32n【点睛】本题主要考查等差、等比数列的通项公式及求和公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的逻辑思维能力及基本计算能力等.19.已知函数fx=alnx+x2,其中aR.()讨论fx的单调性;()当a=1时,证明:fxx2+x1;()求证:对任意正整数n,都有1+121+1221+12ne (其中e2.7183为自然对数的底数).【答案】()见解析()见解析()见解析【解析】【分析】()先求fx,再对a0,a0,所以fx在0,+上单调递增 当a0时,令fx=0,解得x= -a2当0x-a2时,a+2x20,所以f(x)-a2时,a+2x20,所以f(x)0,所以f(x)在(-a2,+)上单调递增 综上,当a0时,函数fx在0,+上单调递增;当a0,当x(1,+)时,g(x)0.所以x=1为极大值点,也为最大值点 所以g(x)g(1)=0.即lnx-x+10.故fxx2+x-1. ()由()知,lnxx-1.令x=1+12n, 则 ln(1+12n)12n , 所以ln(1+12)+ln(1+122)+ln(1+12n)12+122+12n=121-12n1-12=1-12n1=lne,即ln(1+12)(1+122)(1+12n)lne所以1+121+1221+12nb0的焦距为8,其短轴的两个端点与长轴的个端点构成正三角形.(1)求C的方程;(2)设F为C的左焦点,T为直线x=6上任意一点,过点F作TF的垂线交C于两点P,Q.()证明:OT平分线段PQ(其中O为坐标原点);()当TFPQ取最小值时,求点T的坐标.【答案】(1)x224+y28=1;(2)见解析【解析】【分析】(1)由已知,根据椭圆的焦距为8,其短轴的两个端点与长轴的个端点构成正三角形,求得a,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论