河北清河清河中学高一数学 1.3.1《柱体、锥体、台体的表面积与体积》学案_第1页
河北清河清河中学高一数学 1.3.1《柱体、锥体、台体的表面积与体积》学案_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.1 柱体、锥体、台体的表面积与体积 一、学习目标 1. 了解柱、锥、台的表面积和体积计算公式;2能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.二、考纲要求:了解棱柱、棱锥、棱台的表面积和体积的计算公式。三、学法指导:预习教材P23 P26,找出疑惑之处,填写自主学习部分。四、自主学习 引入:1.研究空间几何体,除了研究结构特征和视图以外,还得研究它的表面积和体积.表面积是几何体表面的面积,表示几何体表面的大小;体积是几何体所占空间的大小.那么如何求柱、锥、台、球的表面积和体积呢?2.初中我们学习了正方体、长方体、圆柱的体积公式(S为底面面积, 为高),是否柱体的体积都是这样求呢?锥体、台体的体积呢? 探索新知探究1:棱柱、棱锥、棱台的表面积问题:我们学习过正方体和长方体的表面积,以及它们的展开图(下图),你觉的它们展开图与其表面积有什么关系吗?结论: 正方体、长方体是由多个平面围成的多面体,其表面积就是各个面的面积的和,也就是展开图的面积.新知1:棱柱,棱锥,棱台都是多面体,它们的表面积就是其侧面展开图的面积加上底面的面积.试试1:想想下面多面体的侧面展开图都是什么样子,它们的表面积如何计算?正四棱锥正四棱台正六棱柱 探究2:圆柱、圆锥、圆台的表面积问题:根据圆柱、圆锥的几何特征,它们的侧面展开图是什么图形?它们的表面积等于什么?你能推导它们表面积的计算公式吗?新知2:(1)设圆柱的底面半径为R,母线长为l,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即.(2)设圆锥的底面半径为r,母线长为l,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即.试试2:圆台的侧面展开图叫扇环,扇环是怎么得到的呢?(能否看作是个大扇形减去个小扇形呢)你能试着求出扇环的面积吗?从而圆台的表面积呢?新知3:设圆台的上、下底面半径分别为 r,母线长为 ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即.反思:想想圆柱、圆锥、圆台的结构,你觉得它们的侧面积之间有什么关系吗?五、 典型例题例1 已知棱长为,各面均为等边三角形的四面体,求它的表面积.例2 如图,一个圆台形花盆盆口直径为20,盆底直径为15,底部渗水圆孔直径为,盆壁长15.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(取3.14,结果精确到1毫升)?新知3:经过证明(有兴趣的同学可以查阅祖暅原理)柱体体积公式为:,(S为底面积,h为高)锥体体积公式为:,(S为底面积,h为高)台体体积公式为: (,分别为上、下底面面积,为高)补充:柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离.反思. 比较柱体、锥体、台体的体积公式,你能发现三者之间的关系吗?图(1)例3. 如图(1)所示,三棱锥的顶点为,是它的三条侧棱,且分别是面的垂线,又,求三棱锥的体积.图((2)变式:如图(2),在边长为4的立方体中,求三棱锥的体积.小结:求解锥体体积时,要注意观察其结构特征,尤其是三棱锥(四面体),它的每一个面都可以当作底面来处理.这一方法又叫做等体积法,通常运用此法可以求点到平面的距离(后面将会学习),它会给我们的计算带来方便.例4。高12的圆台,它的中截面(过高的中点且平行于底面的平面与圆台的截面)面积为225,体积为,求截得它的圆锥的体积.变式:已知正六棱台的上、下底面边长分别为2和4,高为2,求截得它的正六棱锥的体积. 动手试试练1. 一个正三棱锥的侧面都是直角三角形,底面边长为,求它的表面积.练2. 在中,若将绕直线旋转一周,求所形成的旋转体的体积.练3. 直三棱柱高为6,底面三角形的边长分别为3,将棱柱削成圆柱,求削去部分体积的最小值.六、 学习小结1. 棱柱、棱锥、棱台及圆柱、圆锥、圆台的表面积和体积计算公式;2. 将空间图形问题转化为平面图形问题,是解决立体几何问题最基本、最常用的方法. 知识拓展1.当柱体、锥体、台体是一些特殊的几何体,比如直棱柱、正棱锥、正棱台时,它们的展开图是一些规则的平面图形,表面积比较好求;当它们不是特殊的几何体,比如斜棱柱、不规则的四面体时,要注意分析各个面的形状、特点,看清楚题目所给的条件,想办法求出各个面的面积,最后相加.2. 柱体、锥体、台体体积公式及应用,公式不要死记,要在理解的基础上掌握;3. 求体积要注意顶点、底面、高的合理选择.七、 当堂检测 (时量:5分钟 满分:10分)计分:1. 正方体的表面积是64,则它对角线的长为( ). A. B. C. D.2. 一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ). A. B. C. D.3. 如果圆锥的轴截面是正三角形,则该圆锥的侧面积与表面积的比是_.4. 圆柱的高增大为原来的3倍,底面直径增大为原来的2倍,则圆柱的体积增大为原来的( ). A.6倍 B.9倍 C.12倍 D.16倍5. 一个斜棱柱的的体积是30,和它等底等高的棱锥的体积为_.八、课后作业 1. 一个正四棱台的两底面边长分别为,侧面积等于两个底面积之和,则这个棱台的高为( ).A. B. C. D. 2. 各棱长均为的三棱锥中,任意一个顶点到其对应面的距离为( ).A. B. C. D.3. 若圆台的上、下底面半径和高的比为44,母线长为10,则圆台的侧面积为_.4. 已知圆台两底面的半径分别为,则圆台和截得它的圆锥的体积比为_.5. 圆锥的底面半径为,母线长为,侧面展开图扇形的圆心角为,求证:(度). 6. 一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论